
Neural Combinatorial Optimization:
Recent Advances in Deep Learning 

for Routing Problems
Chaitanya K. Joshi, University of Cambridge, UK

Rishabh Anand, National University of Singapore

chaitjo.com/post/deep-learning-for-routing-problems

LoGaG Reading Group, 8 March 2022

https://www.chaitjo.com/post/deep-learning-for-routing-problems/


Agenda

1. Background and Motivation (Quick)

2. Unified Neural Combinatorial Optimization Pipeline (Quick)

3. Case Studies of Recent Advances & Future Work (Fun Part!)



Combinatorial Optimization

• Combinatorial Optimization
• In the intersection of mathematics and computer science.
• Solve constrained optimization problems which are NP-Hard.

• NP-Hard problems
• Impossible to solve optimally at large scales: exhaustively searching for their 

solutions is beyond the limits of modern computers.

• Why should we care?
• Robust and reliable approximation algorithms have immense practical 

applications and are the backbone of modern industries.
• Usually defined on graphs à Graph Neural Networks!
• Pre-empt many recent trends in GRL!



Travelling Salesperson Problem

“Given a list of cities and the distances between each pair of cities, what is 
the shortest possible route that a salesperson can take to visit each 

city and returns to the origin city?”



Travelling Salesperson Problem

So famous, or notorious, that there is an xkcd comic on it:

Applications ranging from logistics and scheduling to genomics.



Routing Problems

• Routing Problems, a.k.a. Vehicle Routing Problems
• Class of COPs that require traversing a sequence of nodes (e.g. cities) or 

edges (e.g. roads between cities) in a specific order, i.e. routing.
• Routes must fulfil a set of constraints or optimise a set of variables. 



Routing Problems

Real-world VRPs involve challenging constraints beyond the 
somewhat vanilla TSP. Some relatively well-studied ones include:



Deep Learning for Routing Problems

• Developing solvers: expert intuition and years of trial-and-error. 
• Concorde[1]

• State-of-the-art TSP solver.
• Leverages over 50 years of research on linear programming, cutting plane 

algorithms and branch-and-bound.
• Can find optimal solutions up to tens of thousands of nodes, but with 

extremely long execution time.

• Solvers for complex VRPs are even more challenging, especially with 
real-world constraints such as capacities or time windows in the mix.

[1] Applegate, et al., The traveling salesman problem: a computational study, Princeton university press, 2006.



Deep Learning for Routing Problems

• Developing solvers: expert intuition and years of trial-and-error. 
• Concorde
• State-of-the-art TSP solver.
• Leverages over 50 years of research on linear programming, cutting plane 

algorithms and branch-and-bound.
• Can find optimal solutions up to tens of thousands of nodes, but with 

extremely long execution time.

• Solvers for complex VRPs is even more challenging, especially with 
real-world constraints such as capacities or time windows in the mix.

Big Picture Idea:

Can we use Deep Learning
to automate and augment
expert intuition required 
for solving Combinatorial 
Optimization Problems?[1]

[1] Bengio et al., Machine learning for combinatorial optimization: a methodological tour d’horizon, EJOR 2020



Neural Combinatorial Optimization
End-to-end Deep 

Neural Network Model

Combinatorial 
Optimization Problems

(Usually at the expense of 
theoretical guarantees and

bounds on solutions…)



Neural Combinatorial Optimization

• Neural networks produce approximate solutions to COPs by directly learning 
from problem instances themselves (end-to-end)[1].
• GNNs at the core of deep learning-driven solvers[2].
• Why?

1. No Handcrafted 
Heuristics

• Learnt heuristics 
via imitating
optimal solvers or 
via RL.

2. Fast Inference 
on GPUs

• Real-time decision 
making.

• Large-scale 
instances.

3. Tackling Under-
studied COPs

• Scientific 
discovery[3].

• Computer 
architecture[4].

[1] Vinyals et al., Pointer Networks, NeurIPS 2015
[2] Cappart et al., Combinatorial optimization and reasoning with GNNs, IJCAI 2021

[3] Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021
[4] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021



Agenda

1. Background and Motivation

2. Unified Neural Combinatorial Optimization Pipeline

3. Case Studies of Recent Advances & Future Work



A Unified Pipeline for Neural Comb. Opt.[1]

[1] Joshi et al., Learning TSP Requires Rethinking Generalization, CP 2021



(1) Defining the problem via graphs

TSP is formulated via a fully-connected graph of cities/nodes, which can be 
sparsified further for learning on larger graphs[1] or faster[2].

[1] Khalil, Dai, et al., Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(2) Obtaining embeddings for graph nodes and edges

Embeddings are obtained using a GNN[1][2]/Transformer[3][4] encoder, which builds 
local structural features via aggregating from neighbourhoods.

Bonus: nice 
connections!

[1] Khalil, Dai, et al., Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019
[3] Deudon et al., Learning heuristics for the tsp by policy gradient, CPAIOR 2018
[4] Kool et al., Attention, learn to solve routing problems!, ICLR 2019



(3 + 4) Converting embeddings into discrete solutions 

• Probabilities are assigned to each node or edge for belonging to the solution set.
• Converted into discrete decisions through classical graph search techniques, e.g.

greedy search, beam search.



(3 + 4) Non-autoregressive Decoding

Non-autoregressive Decoding: MLP makes a prediction per edge to 
obtain a 'heatmap' of edge probabilities[1][2].

[1] Nowak, et al., A note on learning algorithms for quadratic assignment with graph neural networks, arXiv 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(3 + 4) Autoregressive Decoding

Autoregressive Decoding: Probabilities are assigned conditionally through step-by-
step graph traversal via a pointing mechanism (attention)[1][2][3][4].

[1] Vinyals et al., Pointer Networks, NeurIPS 2015
[2] Bello et al., Neural Combinatorial Optimization, ICLR 2017

[3] Deudon et al., Learning heuristics for the tsp by policy gradient, CPAIOR 2018
[4] Kool et al., Attention, learn to solve routing problems!, ICLR 2019



(5) Training the pipeline: Imitation Learning

• Entire encoder-decoder model is trained in end-to-end.

• Imitating an optimal solver, i.e. supervised learning 
• Concrode solver is used to generate labelled training datasets of optimal 

tours for millions of random TSP instances.
• AR decoder models: trained via teacher-forcing to output the optimal 

sequence of tour nodes (seq2seq)[1].
• NAR decoder models: trained to identify edges traversed during the tour 

from non-traversed edges (binary classification over edges)[2].

[1] Vinyals et al., Pointer Networks, NeurIPS 2015
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(5) Training the pipeline: Reinforcement Learning

• Reinforcement Learning
• Routing problems: minimize a problem-specific cost functions (e.g. the tour 

length for TSP) => elegantly cast in RL framework. 
• AR decoder models: sequential decision making => trained via standard policy 

gradient algorithms[1][2] or Deep Q-Learning[3].

• Good alternative in the absence of groundtruth solutions, as is often 
the case for understudied problems, e.g. chip design[3]. 

[1] Bello et al., Neural Combinatorial Optimization, ICLR 2017
[2] Kool et al., Attention, learn to solve routing problems!, ICLR 2019
[3] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021



Looking Back:
Characterizing Prominent Papers via the Pipeline





Below 1% Optimality Gap to Concorde for 
TSPs with 100s of Cities:

6.01

8.35

5.99

8.31

5.75

8

5.73

7.94

5.7

7.87

5.7

7.76

0

1

2

3

4

5

6

7

8

9

50 Cities 100 Cities

Av
er

ag
e 

To
ur

 L
en

gt
h

Non-learnt Heuristic Khalil,Dai-etal-2017 Bello-etal-2017
Kool-etal-2018 Joshi-etal-2019 Concorde (Optimal)



Agenda

1. Background and Motivation

2. Unified Neural Combinatorial Optimization Pipeline

3. Case Studies of Recent Advances & Future Work



Looking Ahead:
Recent Advances and Avenues for Future Work
• With the unified 5-stage pipeline in place, let us highlight some recent 

advances and trends in deep learning for routing problems. 

• We will also provide some future research directions with a focus on 
improving generalization to large-scale and real-world instances.

• Main challenges:
• Scaling: Learning on or from very large-scale TSP instances.
• Generalization: Transferring models from small/synthetic to large-scale/real-

world TSP instances.



Leveraging Equivariance and Symmetries

• Autoregressive decoding: routing as seq2seq and solutions as permutations of cities. 
• This does not consider the underlying symmetries of routing problems – there may be multiple optimal 

permutations for the same tour.

• POMO[1]: Leverage invariance to the starting city. 
• Kool et al.’s model[2], but with a new reinforcement learning objective/rollout (pipeline step 5) which 

exploits the existence of multiple optimal tour permutations.

[1] Kwon et al., POMO: Policy Optimization with Multiple Optima, NeurIPS 2020
[2] Kool et al., Attention, learn to solve routing problems!, ICLR 2019

In seq2seq 
format



Leveraging Equivariance and Symmetries

• eMAGIC[1] upgrades Kool et al.’s model with equivariance to rotations, 
reflections, and translations (i.e. the Euclidean symmetry group) of the input city 
coordinates.
• Ensure equivariance by: (1) data augmentation during problem definition (pipeline step 1); and (2) 

relative coordinates during graph encoding (pipeline step 2). 
• Super strong results on zero-shot generalization from random instances to the real-world TSPLib

benchmark suite.

[1] Ouyang et al., Generalization in Deep RL for TSP Problems via Equivariance and Local Search, arXiv 2021



Leveraging Equivariance and Symmetries

• Big picture: Geometric Deep Learning
• Blueprint for architecture design: explicitly think about and incorporate the 

symmetries and inductive biases that govern the underlying data. 
• Routing: embedded in Euclidean coordinates and the routes are cyclical.



Improved Graph Search Algorithms

• One-shot, non-autoregressive decoding[1] + more powerful/flexible 
graph search algorithms, e.g. Dynamic Programming[2], MCTS[3].

[1] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019
[2] Kool et al., Deep Policy Dynamic Programming for Vehicle Routing Problems, arXiv 2021
[3] Fu et al., Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances, AAAI 2021



Divide and Conquer for Extrapolation

• Huge TSPs: set of small sub-graphs of the same size as the graphs used for training the GNN. 

• Sub-graph heatmaps merged[1] to obtain heatmap for the full graph, followed by MCTS. 

• Divide-and-conquer approach[2] ensures that predictions by GNN generalize from smaller to 
larger instances. (Up to 10,000 node TSPs at 3% optimality gap!)

Bonus: nice 
connections!

[1] Fu et al., Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances, AAAI 2021
[2] Nowak et al., Divide and Conquer Networks, ICLR 2018



Neuro-symbolic AI

• Overall, better search + divide-and-conquer suggests stronger coupling between 
the design of the neural (GNNs + decoding) and symbolic (graph search) 
components is essential for out-of-distribution generalization.



Learning to Improve Sub-optimal Solutions

• Learning to iteratively improve sub-optimal solutions[1][2]:
• a.k.a. learning to perform local search[3][4].
• Alternative to ‘constructive’ AR and NAR decoding schemes.

• Learning to guide decisions within classical search heuristics (designed to work 
regardless of problem scale) à implicitly better zero-shot generalization.

[1] Chen and Tian, Learning to Perform Local Rewriting for Combinatorial Optimization, NeurIPS 2019
[2] Wu et al., Learning Improvement Heuristics for Solving Routing Problems, 2019 (TNNLS 2021)
[3] da Costa et al., Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep Reinforcement Learning, AAAI 2021
[4] Hudson et al., Graph Neural Network Guided Local Search for the Traveling Salesperson Problem, ICLR 2022



Learning to Improve Sub-optimal Solutions

• Combined with symmetry: Dual-aspect Transformer[1] (structure + position 
updates) with learnable cyclical positional encodings.
• ‘Neuralized’ LKH algorithm[2]: Up to 5,000 node TSPs at <1% optimality gap! 

[1] Ma et al., Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer, NeurIPS 2021
[2] Xin et al., NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem, NeurIPS 2021



Learning to Improve Sub-optimal Solutions

• Potential limitation: need for hand-designed local search algorithms, which may 
not exist for understudied COPs.

Bonus: nice 
connections!



Learning Paradigms that Promote Generalization

• Explicit focus on generalization beyond SL and RL, transfer learning:
• Autoencoder to learn a continuous space of routing problem solutions[1].
• Neural solvers robust to adversarial perturbations[2].
• Fast finetuning for adapting to each new TSP instance[3].

• Pre-training revolution from NLP[4]

• What is the equivalent of language modelling for routing, e.g. TSP?
• Can we transfer from ‘easy’ TSP to more complex VRPs?

[1] Hottung et al., Learning a Latent Search Space for Routing Problems using Variational Autoencoders, ICLR 2021
[2] Geisler et al., Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness, ICLR 2022
[3] Hottung et al., Efficient Active Search for Combinatorial Optimization Problems, arXiv 2021
[4] Ruder, NLP's ImageNet moment has arrived, 2018



Improved Evaluation Protocols

• Repeated calls for more realistic evaluation and real-world impact:
• Theory: You are limited by data generation in the NP-Hard regime => you may be 

solving/measuring performance for a simpler sub-problem than the ‘real deal’[1].
• Practice: Unrealistic experiment design and evaluation protocols => no real-world adoption 

from the OR community yet => new guidelines[2].

• Potential remedies:
• Real-world benchmarks, e.g. TSPLib, CVRPLib.
• Community Competitions on fresh data:

• ML4CO @ NeurIPS 2021
• AI4TSP @ IJCAI 2021

[1] Yehuda et al., It's Not What Machines Can Learn, It's What We Cannot Teach, ICML 2020.
[2] Accorsi et al., Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems, arXiv 2021.



Improved Evaluation Protocols

• Repeated calls for more realistic evaluation and real-world impact:
• Theory: You are limited by data generation in the NP-Hard regime => you may be 

solving/measuring performance for a simpler sub-problem than the ‘real deal’[1].
• Practice: Unrealistic experiment design and evaluation protocols => no real-world adoption 

from the OR community yet => new guidelines[2].

• Potential remedies:
• Real-world benchmarks, e.g. TSPLib, CVRPLib.
• Community Competitions on fresh data:

• ML4CO @ NeurIPS 2021
• AI4TSP @ IJCAI 2021

[1] Yehuda et al., It's Not What Machines Can Learn, It's What We Cannot Teach, ICML 2020.
[2] Accorsi et al., Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems, arXiv 2021.

More profound motivation?

Neural Combinatorial 
Optimization can be used as a 

general tool for tackling 
previously un-encountered NP-
hard problems, especially those 

that are non-trivial to design 
heuristics for[1].

[1] Bello et al., Neural Combinatorial Optimization, ICLR 2017



Understudied Combinatorial Problems

Input Genome 
Sequence 

Reads

Genome Sequence 
Reconstruction

Chip Design[1]: GNN Encoder à CNN Decoder 
à RL to minimize chip metrics.

[1] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021
[2] Almasan et al., ENERO: Efficient Real-Time WAN Routing Optimization with Deep Reinforcement Learning, arXiv 2022
[3] Vrček et al., Genome Sequence Reconstruction Using Gated Graph Convolutional Network, openreview 2021.

Communications 
Network Optimization[2]:
GNN action selector à
RL + Local Search to 
minimize traffic on 
WANs.

Genome Assembly[3]: GNN encoder à Heatmap 
à SL to reconstruct genome sequences.



• Thank you to my co-author[1] (R. Anand), collaborators[2][3] (X. Bresson, T. 
Laurent, Q. Cappart, L-M. Rousseau), and people who gave feedback!
• Happy to chat about missing references, feedback, research, etc. –

chaitjo@gmail.com

Thank 
you for
attending!

[1] Joshi and Anand, Recent Advances in Deep Learning for Routing Problems
[2] Joshi, Laurent, and Bresson, An Efficient Graph Convolutional Network for the TSP, arXiv 2019
[3] Joshi, Cappart, Rousseau, Laurent, Learning TSP Requires Rethinking Generalization, CP 2021

http://chaitjo@gmail.com

