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Agenda

1. Background and Motivation (Quick)
2. Unified Neural Combinatorial Optimization Pipeline (Quick)

3. Case Studies of Recent Advances & Future Work (Fun Part!)



Combinatorial Optimization

* Combinatorial Optimization
* In the intersection of mathematics and computer science.
* Solve constrained optimization problems which are NP-Hard.

* NP-Hard problems

* Impossible to solve optimally at large scales: exhaustively searching for their
solutions is beyond the limits of modern computers.

* Why should we care?

* Robust and reliable approximation algorithms have immense practical
applications and are the backbone of modern industries.

* Usually defined on graphs = Graph Neural Networks!
* Pre-empt many recent trends in GRL!



Travelling Salesperson Problem

“Given a list of cities and the distances between each pair of cities, what is
the shortest possible route that a salesperson can take to visit each
city and returns to the origin city?”
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Travelling Salesperson Problem

So famous, or notorious, that there is an xkcd comic on it:
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Applications ranging from logistics and scheduling to genomics.



Routing Problems

* Routing Problems, a.k.a. Vehicle Routing Problems

 Class of COPs that require traversing a sequence of nodes (e.g. cities) or
edges (e.g. roads between cities) in a specific order, i.e. routing.

* Routes must fulfil a set of constraints or optimise a set of variables.
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Routing Problems

Real-world VRPs involve challenging constraints beyond the
somewhat vanilla TSP. Some relatively well-studied ones include:
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Deep Learning for Routing Problems

* Developing solvers: expert intuition and years of trial-and-error.

e Concordelll

e State-of-the-art TSP solver.

* Leverages over 50 years of research on linear programming, cutting plane
algorithms and branch-and-bound.

* Can find optimal solutions up to tens of thousands of nodes, but with
extremely long execution time.

* Solvers for complex VRPs are even more challenging, especially with
real-world constraints such as capacities or time windows in the mix.

[1] Applegate, et al., The traveling salesman problem: a computational study, Princeton university press, 2006.



Big Picture ldea:

Can we use Deep Learning

to clifelaugment

expert intuition required
for solving Combinatorial
Optimization Problems?:

[1] Bengio et al., Machine learning for combinatorial optimization: a methodological tour d’horizon, EJOR 2020



Neural Combinatorial Optimization

End-to-end Deep
Neural Network Model

ZN

Combinatorial (Usually at the expense of

theoretical guarantees and

Optimization PrObIemS bounds on solutions...)




Neural Combinatorial Optimization

* Neural networks produce approximate solutions to COPs by directly learning
from problem instances themselves (end-to-end)!,

* GNNs at the core of deep learning-driven solvers!2.

e Why?
1. No Handcrafted 2. Fast Inference s Tackling Under-
Heuristics on GPUs studied COPs
e Learnt heuristics e Real-time decision e Scientific
via imitating making. discovery!3l.
optimal solvers or e Large-scale e Computer
via RL. instances. architecture!4l.
[1] Vinyals et al., Pointer Networks, NeurlPS 2015 [3] Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021

[2] Cappart et al., Combinatorial optimization and reasoning with GNNs, IJCAI 2021 [4] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021
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A Unified Pipeline tor Neural Comb. Opt.m
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(1) Defining the problem via graphs

TSP is formulated via a fully-connected graph of cities/nodes, which can be
sparsified further for learning on larger graphs!!! or fasterl2l.
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[1] Khalil, Dai, et al., Learning combinatorial optimization algorithms over graphs, NeurlPS 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(2) Obtaining embeddings for graph nodes and edges

Embeddings are obtained using a GNNI1[21/Transformer(31l4] encoder, which builds
local structural features via aggregating from neighbourhoods.
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[1] Khalil, Dai, et al., Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019

[3] Deudon et al., Learning heuristics for the tsp by policy gradient, CPAIOR 2018

[4] Kool et al., Attention, learn to solve routing problems!, ICLR 2019
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(3 + 4) Converting embeddings into discrete solutions

* Probabilities are assigned to each node or edge for belonging to the solution set.

* Converted into discrete decisions through classical graph search techniques, e.g.

greedy search, beam search.
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(3 +4) Non-autoregressive Decoding

Non-autoregressive Decoding: MLP makes a prediction per edge to
obtain a 'heatmap' of edge probabilities!12],
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[1] Nowak, et al., A note on learning algorithms for quadratic assignment with graph neural networks, arXiv 2017
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(3 + 4) Autoregressive Decoding

Autoregressive Decoding: Probabilities are assigned conditionally through step-by-
step graph traversal via a pointing mechanism (attention)(21(3114],

Autoregressive Decoding
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[1] Vinyals et al., Pointer Networks, NeurlIPS 2015 [3] Deudon et al., Learning heuristics for the tsp by policy gradient, CPAIOR 2018

[2] Bello et al., Neural Combinatorial Optimization, ICLR 2017 [4] Kool et al., Attention, learn to solve routing problems!, ICLR 2019



(5) Training the pipeline: Imitation Learning

Problem Graph Solution Solution Policy
Definition Embedding Decoding Search Learning

e Entire encoder-decoder model is trained in end-to-end.

* Imitating an optimal solver, i.e. supervised learning

* Concrode solver is used to generate labelled training datasets of optimal
tours for millions of random TSP instances.

* AR decoder models: trained via teacher-forcing to output the optimal
sequence of tour nodes (seq2seq)!!.

* NAR decoder models: trained to identify edges traversed during the tour
from non-traversed edges (binary classification over edges)!2!.

[1] Vinyals et al., Pointer Networks, NeurlPS 2015
[2] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019



(5) Training the pipeline: Reinforcement Learning

Problem Graph Solution Solution Policy
Definition Embedding Decoding Search Learning

* Reinforcement Learning

* Routing problems: minimize a problem-specific cost functions (e.g. the tour
length for TSP) => elegantly cast in RL framework.

* AR decoder models: sequential decision making => trained via standard policy
gradient algorithms!1[2] or Deep Q-Learning!3l.

* Good alternative in the absence of groundtruth solutions, as is often
the case for understudied problems, e.g. chip design!3!.

[1] Bello et al., Neural Combinatorial Optimization, ICLR 2017
[2] Kool et al., Attention, learn to solve routing problems!, ICLR 2019
[3] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021



Looking Back:
Characterizing Prominent Papers via the Pipeline

Problem Graph Solution Solution Policy
Definition Embedding Decoding Search Learning

Solution Policy
Paper Definition Graph Embedding Decoding Solution Search Learning
Vinyals et al., Sequence Seq2Seq Attention (AR) Beam Search Immitation
2015 (SL)
Bello et al., Sequence Seq2seq Attention (AR) Sampling Actor-critic
2017 (RL)
Khalil et al., Sparse Structure2vec MLP (AR) Greedy Search DQN (RL)

2017 Graph
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Below 1% Optimality Gap to Concorde for
TSPs with 100s of Cities:
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Looking Ahead:
Recent Advances and Avenues for Future Work

* With the unified 5-stage pipeline in place, let us highlight some recent
advances and trends in deep learning for routing problems.

* We will also provide some future research directions with a focus on
improving generalization to large-scale and real-world instances.

* Main challenges:
* Scaling: Learning on or from very large-scale TSP instances.

* Generalization: Transferring models from small/synthetic to large-scale/real-
world TSP instances.



Leveraging Equivariance and Symmetries

* Autoregressive decoding: routing as seq2seq and solutions as permutations of cities.
* This does not consider the underlying symmetries of routing problems — there may be multiple optimal
permutations for the same tour.
 POMOL: Leverage invariance to the starting city.

* Kool et al’s model?], but with a new reinforcement learning objective/rollout (pipeline step 5) which
exploits the existence of multiple optimal tour permutations.
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[1] Kwon et al., POMO: Policy Optimization with Multiple Optima, NeurlPS 2020
[2] Kool et al., Attention, learn to solve routing problems!, ICLR 2019



Leveraging Equivariance and Symmetries

* eMAGIC! upgrades Kool et al’s model with equivariance to rotations,
reflections, and translations (i.e. the Euclidean symmetry group) of the input city

coordinates.
* Ensure equivariance by: (1) data augmentation during problem definition (pipeline step 1); and (2)
relative coordinates during graph encoding (pipeline step 2).
» Super strong results on zero-shot generalization from random instances to the real-world TSPLib

benchmark suite.

—>

—_
Reflect

Rotate

[1] Ouyang et al., Generalization in Deep RL for TSP Problems via Equivariance and Local Search, arXiv 2021



Leveraging Equivariance and Symmetries

* Big picture: Geometric Deep Learning

* Blueprint for architecture design: explicitly think about and incorporate the
symmetries and inductive biases that govern the underlying data.

* Routing: embedded in Euclidean coordinates and the routes are cyclical.

Solution Policy
Paper Definition Graph Embedding Decoding Solution Search Learning
Kool et al., Full Graph Transformer Attention (AR) Sampling Rollout (RL)
2019 Encoder
Kwon et al.,, Full Graph Transformer Attention (AR) Sampling POMO Rollout
2020 Encoder (RL)
Ouyanget  Full Graph + Data Equivariant GNN  Attention (AR) Sampling + Policy Rollout

al., 2021 Augmentation Local Search (RL)



Improved Graph Search Algorithms

* One-shot, non-autoregressive decoding!!! + more powerful/flexible
graph search algorithms, e.g. Dynamic Programming!2, MCTSI3!,

Graph Beam
—> ConvNet —— ——> Search ——>
Model Decoder
Input 2D graph Edge prediction heat-map Valid TSP tour

(a) Travelling Salesman Problem (b) Vehicle Routing Problem (c) TSP with Time Windows

[1] Joshi et al., An Efficient Graph Convolutional Network for the TSP, arXiv 2019
[2] Kool et al., Deep Policy Dynamic Programming for Vehicle Routing Problems, arXiv 2021
[3] Fu et al., Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances, AAAI 2021



Divide and Conquer for Extrapolation

* Huge TSPs: set of small sub-graphs of the same size as the graphs used for training the GNN.
* Sub-graph heatmaps merged! to obtain heatmap for the full graph, followed by MCTS.

 Divide-and-conquer approach!® ensures that predictions by GNN generalize from smaller to
larger instances. (Up to 10,000 node TSPs at 3% optimality gap!)
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[1] Fu et al., Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances, AAAI 2021
[2] Nowak et al., Divide and Conquer Networks, ICLR 2018




Neuro-symbolic Al

e Overall, better search + divide-and-conquer suggests stronger coupling between

the design of the neural (GNNs + decoding) and symbolic (graph search)
components is essential for out-of-distribution generalization.
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Learning to Improve Sub-optimal Solutions

* Learning to iteratively improve sub-optimal solutions!1[2l:
* a.k.a. learning to perform local search!31[4],
* Alternative to ‘constructive’ AR and NAR decoding schemes.

* Learning to guide decisions within classical search heuristics (designed to work
regardless of problem scale) = implicitly better zero-shot generalization.
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Chen and Tian, Learning to Perform Local Rewriting for Combinatorial Optimization, NeurlPS 2019

Wu et al., Learning Improvement Heuristics for Solving Routing Problems, 2019 (TNNLS 2021)

da Costa et al., Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep Reinforcement Learning, AAAI 2021
Hudson et al., Graph Neural Network Guided Local Search for the Traveling Salesperson Problem, ICLR 2022
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Learning to Improve Sub-optimal Solutions

* Combined with symmetry: Dual-aspect Transformer!!! (structure + position
updates) with learnable cyclical positional encodings.

* ‘Neuralized’ LKH algorithm!2l: Up to 5,000 node TSPs at <1% optimality gap!
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[1] Ma et al., Learning to lteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer, NeurlPS 2021
[2] Xin et al., NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem, NeurlPS 2021
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Learning to Improve Sub-optimal Solutions

* Potential limitation: need for hand-designed local search algorithms, which may
not exist for understudied COPs.

Graph Solution Policy
Paper Definition Embedding Decoding Solution Search  Learning
Wu et al.,, Sequence + Transformer Transformer Local Search Actor-critic
2021 Position Encoder Decoder (L2I) (RL)
da Costaet Sequence GCN RNN + Attention Local Search Actor-critic
al., 2020 (L21) (RL)
Maetal., Sequence + Cyclic  Dual Dual Transformer  Local Search PPO +
2021 Position Transformer Decoder (L2I) Curriculum
el (RL) Bonus: nice
ions!
Xin et al., Sparse Graph GAT MLP Heatmap LKH Algorithm Immitation connections:
= (NAR) (sL)
X
Hudsonet  Sparse Dual Graph  GAT MLP Heatmap Guided Local Immitation / \\
al., 2021 (NAR) Search (SL) & - a



Learning Paradigms that Promote Generalization

 Explicit focus on generalization beyond SL and RL, transfer learning:
« Autoencoder to learn a continuous space of routing problem solutions!ll.
* Neural solvers robust to adversarial perturbations!2..
* Fast finetuning for adapting to each new TSP instancel3l.

* Pre-training revolution from NLP!4]
 What is the equivalent of language modelling for routing, e.g. TSP?
* Can we transfer from ‘easy’ TSP to more complex VRPs?

1] Hottung et al., Learning a Latent Search Space for Routing Problems using Variational Autoencoders, ICLR 2021

2] Geisler et al., Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness, ICLR 2022
3] Hottung et al., Efficient Active Search for Combinatorial Optimization Problems, arXiv 2021

4] Ruder, NLP's ImageNet moment has arrived, 2018

— ——r—



Improved Evaluation Protocols

* Repeated calls for more realistic evaluation and real-world impact:

* Theory: You are limited by data generation in the NP-Hard regime => you may be
solving/measuring performance for a simpler sub-problem than the ‘real deal 1.

* Practice: Unrealistic experiment design and evaluation protocols => no real-world adoption
from the OR community yet => new guidelines!?l.

Machine Learning for
Combinatorial Optimization

* Potential remedies: e T IO 505
* Real-world benchmarks, e.g. TSPLib, CVRPLib. =) (D
: . &t — @
 Community Competitions on fresh data: /L 4 L\ﬁ\
. MLA4CO @ NeurlPS 2021 &l (i) (] &3
« AI4TSP @ 1JCAI 2021 = \@C a4 / -
f’ R 4 R
-6

[1] Yehuda et al., It's Not What Machines Can Learn, It's What We Cannot Teach, ICML 2020.
[2] Accorsi et al., Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems, arXiv 2021.



More profound motivation?

Neural Combinatorial
Optimizationfe:1gR o[RS E=le ReE:
general tool for tackling
previously un-encountered NP-
hard problemsgyJ=eEH\ A=
that are non-trivial to design
heuristics for!ll.

[1] Bello et al., Neural Combinatorial Optimization, ICLR 2017



Understudied Combinatorial Problems

Real-Time Operation Scalability
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[1] Mirhoseini et al., A graph placement methodology for fast chip design, Nature 2021
[2] Almasan et al., ENERO: Efficient Real-Time WAN Routing Optimization with Deep Reinforcement Learning, arXiv 2022

[3] Vrcek et al., Genome Sequence Reconstruction Using Gated Graph Convolutional Network, openreview 2021.
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* Thank you to my co-author!l! (R. Anand), collaborators!23] (X. Bresson, T.
Laurent, Q. Cappart, L-M. Rousseau), and people who gave feedback!

* Happy to chat about missing references, feedback, research, etc. —
chaitjo@gmail.com

[1] Joshi and Anand, Recent Advances in Deep Learning for Routing Problems
[2] Joshi, Laurent, and Bresson, An Efficient Graph Convolutional Network for the TSP, arXiv 2019
[3] Joshi, Cappart, Rousseau, Laurent, Learning TSP Requires Rethinking Generalization, CP 2021
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