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Objective of this talk

Present the content of this guide

but most importantly trigger discussions and exchanges
about the state of the field and research directions !




Executive Summary




Categorised by intermediate features within layers

Small molecules

Materials |

A taxonomy of Geometric GNN architectures
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Understanding Geometric GNNs

The “turnable knobs” where innovation may happen
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Joshi, Bodnar, Mathis, Cohen, Lio. On the Expressive Power of Geometric GNNs. ICML, 2023.



Why care about
Geometric GNNs?



Systems with geometric & relational structure

Small Inorganic Catalysis
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Geometric Graph Neural Networks

Fundamental tool for machine learning on 3D graphs
Eg. High throughput virtual screening

Geometric . Geometric

. .
GNN Prediction

* Functional properties?
* Ligand binding affinity?

* Ligand efficacy?

[1] Gligorijevic et al., DeepFRI, Nature Communications, 2021. [2] Zhang et al., GearNet, ICLR, 2023.



Geometric Graph Neural Networks

Embedder or denoiser within 3D generative models
Eg. Protein generation and inverse design

Geometric 3 Geometric

Graph GNN
New
Generative . Geometric
Model Graphs

[1] Dauparas et al., ProteinMPNN, Science, 2022. [2] Watson, Juergens et al., RFdiffusion, Nature, 2023.



Geometric Graph Neural Networks

Learning to simulating molecular dynamics
Eg. Catalyst-adsorbate interaction

Current 3 Geometric . Next

State GNN State
A
Dynamics
Simulator

[1] Batzner et al., NequlP, Nature Communications, 2022. [2] Batatia et al., MACE, NeurlPS 2022.



From GNNs to Geometric GNNs



Normal graphs

A graph is a set of nodes connected by edges

QTLX]'3

“~p Scalar features €

. X N adjacency matrix

E.g. atom type

Note: fis the dimension or number of scalar feature channels, so S is a list.



Normal Graph Neural Networks

Message passing updates node features using local aggregation

layer O
E m;; o

]GN layer 1
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s .= Upp (Sgt) | mz@) | propagates features beyond

local neighbourhoods.



Normal Graph Neural Networks

Learn how to propagate information along the graph

Target node Neural Network
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(a) Input graph (b) Neighborhood aggregation



Geometric graphs

Each node is;:
* embedded in Euclidean space e.g. atoms in 3D
 decorated with geometric attributes s.a. velocity

—

G=(4,5X,V)

9 Geometric features®

Adjacency =
€ Rm™
c Rnxd
Scalar features

E RnXa

* We work with a single vector feature per node, but our setup generalises to multiple vector features and higher-order tensors.



Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Rotations & Reflections (), € & act on only vectors V' and coordinates X:

Scalar features remain unchanged — invariant.

* We use & to denote rotations SO(d) or rotations and reflections O(d)



Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Translations ¢t € T (d) act on only the coordinates X

Scalar and vector features remain unchanged — invariant.



Why building physics into GNNs?

Geometric GNNs should account for physical symmetries

4
J Permutation
5

3D atomic
system
. Invariant
Potential energy \f ............................................................
c R
i - € R™*" i invariant i
Atom types : > i et -
c R™*1 o] permute rows m I
H H H
P R
— e R™*" c R3%3
3D coordinates — > — > —
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X, Y, Z X,V Z




Building blocks of Geometric GNNs

o Scalar features must be updated in an invariant manner.
* Vector features must be updated Iin an equivariant manner.

Q,c6 Q, €6
=4 5 =4 5
O— - 1O O
(8,9,%) 8.V, X
B
+ ..........
......... Qg c®B

Invariant functions vs. Equivariant functions



Geometric message passing

 update scalar and (optionally) vector features
 aggregate and update functions which retain transformation semantics

mgt) , ﬁiEw : (Aggregate)

This talk: studying how these
S+ o(t+1) functions are defined. (Update)

) )




Modelling pipeline



Pipeline

for prediction tasks on 3D atomic systems
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Input representation

Various heuristics for constructing edges

3D point cloud Smoothed cutoff graph Long-range connections Complete graph
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Embedding Block

How to encode the geometric graph ?

. . Final i |
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=(A,S. V. x i . ( 1 ( o (T)
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[1] Duval et al., PhAST, JMLR, 2023.


https://arxiv.org/abs/2211.12020

Interaction Block

How to learn efficient geometric and relational features ?

Devise efficient and expressive
approaches for encoding and
processing geometric graphs
while respecting physical
symmetries. This can be seen as
an inductive bias.
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Output Block

How to compute predictions from final representations ?

. . Final
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Invariant Geometric GNNSs



B-invariant Geometric GNNs

Update latent representations by scalarising local geometric information

Key design choice:
Body order of
scalarisation

Body Order
of Layer § orceNet,
FAENet
Many-body @
SphereNet
(Dihedrals) 4 - IR
3 A . o .
. .. DimeNet, GVP-GNN,
(Angles) \ | .
GemNet-T  PaiNN
2 |- - ® @

Depth

Geometric GNN Family

o

@® Invarant
® \ACE @® Lquivariant (Cartesian)
® Equivariant (Spherical)

® Unconstrained

® TN, SEGNN,
SE(3)-Transformer

Tensor Order
of Features



Distance-based GNNs

SchNet:, uses relative distances |Z: — 7|/ to scalarise local geometry

E mij

JEN;
4 . I . Relative distances are
3 _ = invariant to global
« ¢ o =— . . .
T_,X 1M;; f (SJ’ “ml? H) ay Ofations & translations.

s =804 3 (s 18 - )
JjEN;

[1] Schitt et al., SchNet, Journal of Chemical Physics, 2018. [3] Li et al., IROS, 2020. Similar architecture for multi-agent robotics.
[2] Xie and Grossman, CGCNN, Phys. Rev. Letters, 2018. [4] Sanchez-Gonzalez et al., ICML, 2020. Similar architecture for physical simulation



Distinguish geometric graphs
Can you tell these two local neighbourhoods apart using
the unordered set of distances only?[]

|deally, you want to distinguish
between these two graphs, but
SchNet is not capable of doing so
because atom pairwise distances
are identical.

[1] Bartok et al., Phys. Rev. B, 2013.  [2] Pozdynakov et al., Incompleteness of atomic structural representations, Phys. Rev. Letters, 2020.



Going beyond distances

DimeNet uses distances AND angles <ijk=2;;-2;,; among triplets

Body order of scalarisation:
ik number of nodes involved In
mj, = f(8;, Sk, || 2|, £i5K) computing local invariant scalars.

(t—l_l) Z f ( (t) (t) dzya Z f2 ( gt)a S]({;t)) d?,ja djk KZ]]C))

JEN; keN;\{i}



Distinguish geometric graphs

Can you tell these two local neighbourhoods apart using
the unordered set of distances and angles, only?!1]

[1] Pozdnyakov et al., Incompleteness of atomic structural representations, Phys. Rev. Letters, 2020.

Relevant for local
scalarisation in
geometric GNNs —
the ideal aggregator
would distinguish all
neighbourhoods.



Moving to higher body order terms

GemNetijalso uses torsion angles among quadruplets

IXl;ik = f(sl, Sk d'z'-ja djk‘-a dlka 427,{37 Klk?) K’L?kl)

Computing higher body order scalar

ik quantities beyond pairwise interactions
improves expressiveness and lead to
Lijk  £lkj Y more accurate but more
i ’@ E; @ computationally expensive models.

m;; = f(s;,s;,dij, Z m; ;)
ed

(t+1) Z f ( (t) (t)a dija Z E(Ska S, dkl7 d’ija djka ér&jka Kjkla é’&]kl) .
JEN; keN;\{i},
ZENA\{’LJ}

[1] Gasteiger et al., GemNet, 2022 [2] Wang et al., ComENet, 2022



EXxpressivity
GemNet is theoretically universal, but not its final architecture
| Opinion | .

The GemNet paper includes a theoretical section, in which 1t is stated that GNNs with directed
edge embeddings and two-hop message passing can universally approximate predictions that
are invariant to translation, and equivariant to permutation and rotation. This statement needs
careful reading. It 1s important to note that the universality claim requires conditions like an

Gem Net req U | res a com plete infinite cut-off (i.e. a fully connected graph) and appropriate discretization, as it builds upon

: : : : a previous proof by Dym and Maron [2020] which showed that Tensor Field Networks are

g raph and a certain d Iscretisation universal when operating on full graphs and using infinite tensor rank for equivariant features.
scheme to be universal. As highlighted in the paper, the choice of discretization scheme can affect the universality

of the approximation, and depending on the discretization scheme the resulting mesh might
not provide a universal approximation guarantee. How (o relax these two requirements and
construct sufficient geometric conditions for universality is still an open research question
and emphasized in Section 3.9 in [Gasteiger, 2023].

In particular, this means that while the theoretical model in the GemNet paper can be universal,
the practical final architecture is not. The 4-body message passing in GemNet-Q sacrifices
universality guarantees by operating on a discretization of representations in the directions

far. th reci rder of of each atom’s neighbours. Additionally, GemNet-T, the more efficient version of GemNet,
So fa , (e p e(.: S€ bOdy orde . O performs 3-body message passing similar to DimeNet on radial cutoff graphs, which is
scalars at which all geOmetrlC not universal due to known counterexamples [Pozdnyakov et al., 2020]. The fact that the

universality proof does not necessarily carry over to the final GemNet architecture was also
emphasised by the authors of GemNet in this thread.

In summary, in the GemNet paper it is key to distinguish between the theoretical model,
which can be universal, and the final architecture, which is not. We highlight this point here
to avoid a misconception in the community that invariant architectures operating on distances,
angles, and torsions angles are guaranteed to be universal or complete. Developing a universal
geomelric GNN 1n the general case, for sparse graphs and using finite tensor rank, remains an
open question which we discuss in Section 8.

graphs can be uniquely identified
remains an open guestion.




In a word...

Invariant GNNs pre-compute scalar quantities to capture geometric information,
which is both a blessing & a curse:

* Simple usage of non-linearities on many-body scalars after pre-computation leads to
great performance on some use-cases (e.g. GemNet on OC20)

* Rigidity and scalability of scalars pre-computation

* The accounting of higher-order tuples is expensive.

* Making invariant predictions may still require solving equivariant sub-tasks
 May lack generalisation capabilities (equivariant tasks, multi-domain)

Invariant GNNs constraint the geometric information that can be

utilised, but not model operations




Equivariant Geometric GNNs



Equivariant Geometric GNNs
Why would you want to do that?

* |nvariant GNNs ensure we will obtain invariant outputs by only working with
invariant features within their layers.

 —> Invariants are ‘fixed’ prior to message passing. Changing the number of
message passing layers does not add new invariants. Also, ‘pre-computing’
Invariants may be expensive.

* Equivariant GNNs build up invariants ‘on the go’ during message passing.

« —> More layers of message passing can lead to more complex invariants
being built up.

« —> Furthermore, equivariant quantities remain available.



Motivation: Discriminating geometric graphs

What if all local nheighbourhoods have identical invariant scalars?!]
Pair of graphs cannot be discriminated using only scalars.

How to distinguish them?
Relative orientation of local
neighbourhoods, i.e.
geometric information.

[1] Schitt et al., PaiNN, ICML, 2021.



Intuition: The Picasso Problem

Making invariant predictions may still require solving equivariant sub-tasks

TN ] D W N 5T a- m{
/ N :
" C ©
T ~>

Relative orientation of eyes, nose, mouth is important
(orientation of sub-graphs w.r.t. one another),
not just their presence (invariant quantities)!



Equivariant Geometric GNNs
How do they look?

f(slv Sy veny Sn)

Invariant GNNs only operate on scalars. In internal message-passing, they only pass around scalar objects.

f(817 S2, °--Sn’,/l71, coes 27m/)

Equivariant GNNs “keep” vectors (and other geometric objects) around. In internal message-passing,
they pass around geometric objects.

If we predict an invariant quantity, we project the geometric information to scalars only at the end of all
message-passing layers.



Equivariant Geometric GNNs

Key idea: Keep track of how different features “transform”.
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Because we keep around a mixed bag of
information in which different objects
transform differently (e.g. scalar vs vectors)
we need keep track of what transforms how.

We need to become accountants of geometry.

An accountant of geometry.
Figure courtesy Dall-E.



Accounting rules for geometric objects

 Type: Each feature is associated with a type that tells us how it transforms
under rotations and reflections:

e e.g. scalar, vector, pseudo vector, ...
* Addition: How do we add features of given types? What type do we get out?

* Multiplication: How do we multiply features of given types? What type do we
get out?

 Non-linear operations: How



Example: “Scalar-vector” GNNs

We restrict ourselves to working with scalars and vectors only.

Scalar message

m; := fulsa, I + ) f2 (siysg, 1T, 051, &3 - V5, &5 - Vi, Vi - )
Vector message J ENi
m; = fa(si, [Vill) ©Vi+ D fa(sissy, 18I, 19511, Zij - 95, T - Vi, Vi - ¥5) ©
JEN;

T Z [5 (si,85, [|Zij], |05 ||, Zij - Vi, Zij - Vi, Vi - V) © Ty,
FEN;



What other geometric “types” are there?



What are tensors-type features?

Example: Cartesian tensors

y

Z
«
X

70]
scalar

(1]
vector

rearrange
>
visually

_ﬂatten,ﬁ
stack

tensor
order



What are tensors-type features?

Example: Cartesian tensors

tensor

order tensor

order

/;:hannels

tensor components




What are tensors-type features?

Example: Cartesian tensors

D2l (R)




L, N,
From Cartesian to Spherical tensors

Example: rank-2 Cartesian tensor into Spherical tensors

trace antisymmetric traceless, symmetric
Dy Y
\T‘\\ . _




Why spherical harmonics are confusing?
Metaphor of the blind men and the elephant.

s

It's a fan! It's a wall! It's a rope!

The blind men
and the elephant

It's a spear' S % - 04‘-@\
/ | | —) \
5 ‘ i \‘//% 0 |\W
/ l Lj blt'satree trunk!

It's a snake!



Why spherical harmonics are confusing?

Similarly there are many different perspectives on the spherical harmonics.

Calculus:
Spherical harmonics are a
complete, orthogonal basis
for functions on the sphere in 3D.
We can therefore do
“harmonic analysis” on the sphere.

Physics:
Spherical harmonics are related
to the shapes of the orbitals of the
hydrogen atom.

Representation theory:
Spherical harmonics are a basis of
the irreducible representations of
SO(3). We can decompose any
representation of SO(3) into its |
irreducible components.

Algebra:

Spherical harmonics are instances of harmonic
polynomials, which are eigenfunctions of the
Laplace operator and a subclass of symmetric

Polynomials.



From Cartesian to Spherical tensors

Spherical harmonics as the basis for spherical tensors

- .

Function on a sphere ...as a spherical tensor ...and the underlying basis

Spherical harmonics are the irreducible representations of functions on a sphere, kind
of like the simplest LEGO blocks into which all other functions can be decomposed.



Tensor Field Networks (1!

- - 7 20+1 L
« Higher order spherical tensors as node features /i1 € R “1=0,...,

L

» ...updated via tensor products ®w of neighbourhood features
+ ...with spherical harmonic expansion of displacement i (Z;) R*

Connection with
cartesian basis:

hii—o € RM/

~

il
”
.

y
A

fa™
» X

h(t‘|‘1)

[1] Thomas, Smidt, et al., TFN, 2018.

g ng .
- Tensor product weights:
b w = fuor (3, 3]

rmm"}:(l) _ Y“)(x) YO( - ) |

hl Y(l)( ) :

m=nm

)

R+ 3TV (#)) ®u h(t)
JEN;

[2] Brandstetter, Hesselink, et al., SEGNN, ICLR,2022. [3] Batatia et al., MACE, NeurlPS, 2022. [4] Geiger and Smidt, e3nn, 2022.



Parameterising the tensor product

-
§(Otna) T (Owr) — €5 ( D Wiy S ®f(lz)|<ia))

{3=0 Paﬂ]S(zl,lz—>l3)

x5/ \ x3
8 L
< % —> Total: 960 weights
vy | [ =
yo |2 g

Figure credit: e3nn.org



http://e3nn.org

MACE - Multi-Atomic Cluster Expansion [1]

Take tensor products N

of the aggregated (.)
message with itself
to obtain many-

body features:

Ao = icn@) i = (&1 + @2 + @3)
Be = (91 + ¢2 + ¢3)° = @7 + @5 + 95 + 2¢102 + 201 d3 + 2d203
N————

implicit 3-body terms

Figure credit:
Harry Shaw

[1] Batatia et al., MACE, NeurlPS, 2022.



In a word...

Equivariant GNNs allow the network to learn its set of invariants instead of
pre-computing it, solving equivariant sub-tasks

* Cartesian EGNNs model atomic interactions in Cartesian coordinates and restrict the set
of possible operations on geometric features to preserve equivariance. They update (and
combine) both scalar and vector representations.

 Spherical EGNNs use spherical tensor components, which correspond to the irreducible
representations of SO(3), as their feature type scalar and vector messages in parallel.

Equivariant GNNs perform diligent accounting of how each hidden

feature Iin each layer has to transform to remain equivariant




Unconstrained GNNs




®-Unconstrained GNNs

Do not "bake" symmetries into the model design, unlike previous methods

Body Order Geometric GNN Family
of Layer ForcelNet, D | |
FAENet B
Many-body @ ® \ACE ® LEquivariant (Cartesian)

® Equivariant (Spherical)

Dlﬁereﬂt (Dlhcdlalg) 4 1. Bad @ Unconstrained
canonicalisation 9 | @ @
strateg les DimeNet, GVP-GNN.

_ (Angles)
to deal with these

iInductive biases

\TJCITIINCL- | dl

‘) ) e

s

® ® TEN, SEGNN,
SchNet  E(n)-GNN

(Distances) SE(3)-Transformer

I Tensor Order
N A of Features

Depth



Motivation

Have greater model flexibility and traverse more diverse optimisation paths

Limitations of enforcing symmetries directly into the architecture:
 May overly regularise the model, restricting its set of possible operations and hindering its
capacity to fully express the intricacies of the data
* Render its functioning complex and computationally expensive

Does enforcing Euclidean equivariance as an inductive bias truly

offset a potential reduction in optimization diversity within
constrained learning spaces ?




[1] A. Duval et al., FAENet, ICML, 2023.

[2] Puny et al., Frame Averaging, ICML, 2022.

FAENet;,

Outsource equivariance to the data using Frame Averaging:

___________________________________________________________________________

1. We map all E(3) transformations of

atom positions X to the same canonical ’ V
representation with PCA. : 02(9) (")
! ( 2 y
S=X-1)T(®-1") > —
— — - . —> -4 x N
S =M i=-%'1eR?

7ll

‘F()-(') = {(—’, t}llﬁ = [:tlzl,:i:’ﬁg, :l:’l-t.3]} C E(3)

3D atom positions

% c RVx3

PCA Canonical
\ space

—

2. Compute the canonical
representation of X using F(X).

C={p1(9)"" (X)lg € F(X)}
m(9) " (®) = (X -1i")d



https://arxiv.org/pdf/2305.05577.pdf
https://arxiv.org/abs/2110.03336

FAENet

Equivariant GNN without any symmetry-preserving architectural constraints

3. We apply FAENet on each object of : >
the canonical space.

3D atom positions

AN
Y ¢
xeR" PCA

L Canonical

space
N \_p___/

4. We aggregate results to guarantee
equivariant predictions:

. 1 1
@) = 75 > p2(9)®(pi(g) X))

-------------------------------------------------------------------------------




FAENet

Stochastic Frame Averaging offers a good & fast approximation of equivariance

Key equations | e e .

pir(9) (%) = (3 — 17 )i

p2(X) = Xd'

3D atom positions
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FAENet architecture

Can process geometric information without any design restrictions

4

1. Since we have a way to outsource equivariance, — AMIP (7 IRBF(d.. ‘
the model doesn’t need to enforce it itself. €ij U( (%H ( z])) .

2. We can create a light-weight model whose (1) (1), (D)
capacity is only dedicated to predicting properties fij = o(MLP(e;;|[s; Hsj )

3. We exploit relative position vectors directly,

applying any non-linearity on them instead of relying S(,l ) _ S(,l) + MLP Z s(.l) O f.@
on invariant / equivariant proxies. ¢ J ¢

JEN;

https://arxiv.org/pdf/2305.05577.pdf



https://arxiv.org/pdf/2305.05577.pdf

FAENet expressive power

Distinguishes easily between any two graphs

Synthetic experiments
by (Joshi, Mathis et al.,

P oaq’

k nodes

2023) to analyse the
expressive power of
geometric GNNs

(k = 4-chains) Number of layers
GNN Layer | |£] =2 |5/ +1=3 |£] +2 (5] 43
IGWL 50% 50% 50% 50% 50%
Z  SchNet 5000000 50.0+£0.00 500000 500+0.00 50.0+0.00
~  DimeNet 50.0+0.00 50.0+0.00 500+0.00 50.0+000 50.0+0.00
GWL 50% 50% 100% 100% 100%
> E-GNN 50.0+0.00 50.0+0.0 50.0 £ 0.0 50.0 +0.0 50.0 +0.0
'g GVP-GNN 500000 50.0+£0.0 100.0 £ 0.0 100.0 0.0 100.0 £0.0
| TFN 50.0x000 50.0x0.0 50.0+£0.0 50000 80.0x24.5
MACE 50.0+000 50.0+0.0 90.0 +20.0 90.0+20.0 95.0+15.0
FAENet 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 0.0 100.0 £0.0
FAENet-SFA 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0 100.,0 0.0 100.0 £0.0



https://arxiv.org/abs/2301.09308
https://arxiv.org/abs/2301.09308
https://arxiv.org/abs/2301.09308

Boom of unconstrained approaches

Data augmentation, soft constraints, canonicalisation function & local frames

 ForcelNet (Hu et al., 2021): data augmentation as soft symmetry constraint
« SCN (Zitnick et al, 2022) relaxes the equivariant constraints "to enable more expressive
non-linear transformations”

o SignNet (Lim et al., 2024): tackle the sign ambiguity issue of PCA by utilising a sign-
equivariant network, allowing to use only 1 frame (similarly to SFA).

 (Dym et al. 2024) propose to weight frames to preserve continuity

* (Kaba et al., 2023) learns a shallow equivariant network to perform canonicalisation
* (Arnab et al., 2024) align the canonicalisation function with training data distribution

* (Pozdnyakov et al., 2024): defines local coordinate systems at each atom and averages
over the predictions of a non-equivariant network for system (alternative to FA).



https://arxiv.org/abs/2103.01436
https://arxiv.org/abs/2206.14331
https://arxiv.org/abs/2312.02339
https://arxiv.org/abs/2402.16077
https://arxiv.org/pdf/2211.06489.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://arxiv.org/pdf/2305.19302.pdf

In a word...

Unconstrained GNNs tackle the interplay between the function space that a
model can learn and the ease of optimisation of ML algorithms

* Unconstrained Geometric GNNs are an emerging and under-explored line of work
* They enable the use of a wider range of networks for 3D atomic systems, including
simple, fast & expressive models.

Open guestions:
* Should we rigorously enforce symmetries or learn / approximate them ?
* |s local equivariance desirable, as opposed to global equivariance ?

Unconstrained GNNs use canonicalisation functions, soft constraints or local

frames to enforce (or approximate) symmetries, instead of model design



Future Directions



Some future research directions

Let's discuss them

1. To what extent should physics and symmetry be ‘baked In’ to
Geometric GNNs? |Is rotational equivariance too strong a constraint
on GNN expressivity?

2.How to construct geometric graphs? Coarse-graining and
hierarchical structures? Dynamics and flexibility?

3.How to scale up Geometric GNNs”? Data-Architecture-Hardware”?
Foundation Models ?



Some future research directions

To what extent should physics and symmetries be 'baked in' to Geometric GNNs ?

1. Enforcing symmetries

Invariant vs Equivariant vs Unconstrained GNNs ?
Local vs Global symmetries
Data Efficiency & Generalisation vs greater expressivity & efficiency

2. Energy conservation

Scalability vs Simulation stability
Quantify its importance

3.Deeper theoretical characterisation

ADbllity to solve the geometric graph isomorphism problem
Benefits of higher-order tensors ?



Some future research directions

How should we construct geometric graphs ?

1.Graph creation

Which graph to create ? (complete, local cutoff, long range connections)
Avoid over-squashing
Coarse-graining

2. Temporal dynamics & conformational flexibility

Looking beyond static structures



Some future research directions

How to scale up Geometric GNNs ?

1. Foundation models

Universal potentials, across the whole range of atomic systems
Are interactions the same for small molecules and crystals ?

The place of LLMs in the field ?

2. Large scale datasets and infrastructures

Release of public datasets
DFT ground truth
Computing resources

3. Discovery

How do our computational methods relate to experiments ?
Can we benefit real-world applications ?



Thank you for attending!

Keen to connect — please send us your feedback

N

alexduvalinho.qgithub.io/ Website: chaitjo.com simonmathis.com
@ADuvalinho Twitter: @chaitjo @SimMat20



https://chaitjo.com
https://twitter.com/chaitjo
https://alexduvalinho.github.io/
https://simonmathis.com/

