Graph Neural Networks for the Travelling Salesman Problem

Chaitanya K. Joshi^[1], Thomas Laurent^[2], and Xavier Bresson^[1]

^[1] NTU, Singapore, ^[2] LMU, LA, USA

Boosting Combinatorial Optimization using Machine Learning

(Session at the INFORMS Annual Meeting 2019)

22nd October, 2019

Motivation

- **Operations Research**: solvers for NP-Hard combinatorial problems
 - Backbone of modern industries such as transportation, scheduling, logistics

Good OR solvers

- expert intuition/domain knowledge
- years of trial-and-error

Motivation

- Operations Research, column for ND Hard combinatorial problems - Backbone of We believe that expert intuition uling, logistics can be automated and augmented
- Good OR solver - expert intuition through Machine Learning
 - years of trial-and-error
 - Bengio, Lodi, Prouvost, 2018^[1]

This talk

- Advances in *end-to-end* learning for OR solvers
 - Results on TSP: intensively studied, practical class of routing problems
- Our focus/specialty: Graph Neural Networks
 - New tools for operating directly on the graph structure of problems

Our contributions

An Efficient Graph ConvNet for TSP: arxiv.org/abs/1906.01227

On Learning Paradigms for TSP: arxiv.org/abs/1910.07210

TSP as a graph problem

"Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?"

- Concorde Solver^[1]: leverages 30 years of research
 - Cutting plane algorithms to iteratively solve linear relaxations
 - Branch-and-bound to reduce solution search space
- End-to-end learning for TSP ^[2,3]: Proof-of-concept for learning previously un-encountered NP-Hard problems

^[1] Applegate, Bixby, Chvátal, Cook, The traveling salesman problem: a computational study, 2006
^[2] Vinyals, Fortunato, Jaitly, Pointer networks, NeurIPS 2015
^[3] Bello, Pham, Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, ICLR 2017

End-to-end pipeline for OR problems

This generic pipeline has been used to tackle TSP, MVC, MaxCut, MIS, VRPs, SAT, etc.

Graph Embedding: features

Graph Embedding: message passing

Layer 1

Layer 2

Graph Embedding: aggregation

Layer 1

Layer 2

Vanilla Graph ConvNets ^[1,2]

layer $\ell + 1$

$$h_i^{\ell+1} = f_{\text{G-VCNN}}^{\ell} \left(h_i^{\ell} , \{ h_j^{\ell} : j \to i \} \right) = \text{ReLU} \left(U^{\ell} h_i^{\ell} + V^{\ell} \sum_{j \to i} h_j^{\ell} \right)$$

^[1] Sukhbaatar, Szlam, Fergus, Learning multiagent communication with backpropagation, NeurIPS 2016 ^[2] Kipf, Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017

Residual Gated Graph ConvNets ^[1,2]

$$\begin{aligned} x_i^{\ell+1} &= x_i^{\ell} + \operatorname{ReLU}\left(\operatorname{BN}\left(W_1^{\ell} x_i^{\ell} + \sum_{j \sim i} \eta_{ij}^{\ell} \odot W_2^{\ell} x_j^{\ell}\right)\right) \\ \eta_{ij}^{\ell} &= \frac{\sigma(e_{ij}^{\ell})}{\sum_{j' \sim i} \sigma(e_{ij'}^{\ell}) + \varepsilon} \\ e_{ij}^{\ell+1} &= e_{ij}^{\ell} + \operatorname{ReLU}\left(\operatorname{BN}\left(V_1^{\ell} e_{ij}^{\ell} + V_2^{\ell} x_i^{\ell} + V_3^{\ell} x_j^{\ell}\right)\right) \end{aligned}$$

^[1] Bresson, Laurent, Residual gated graph convnets, ICLR 2018 ^[2] Joshi, Laurent, Bresson, An efficient graph convolutional network technique for the travelling salesman problem, arXiv 2019 Prediction: does an edge belong to the optimal tour?

Prediction: probability distribution over edges

Prediction: Non-autoregressive approach ^[1]

Predictions for all edges are

- produced in **one shot**
- independent of each other

Search for feasible solutions

Search for feasible solutions

- We can use any search algorithm for graphs + enforce problem constraints:
 - Greedy search
 - Beam search
 - Monte Carlo tree search
- Analogous to search in machine translation^[1] or game playing^[2]

Alternate: Autoregressive decoding^[1] with Attention^[2,3]

^[1] Khalil, Dai, Zhang, Dilkina, Song, Learning combinatorial optimization algorithms over graphs, NeurIPS 2017
^[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning heuristics for the tsp by policy gradient, 2018
^[3] Kool, van Hoof, Welling, Attention, learn to solve routing problems!, ICLR 2019

Training the policy

Learning by Imitation (SL)

- Minimize the loss between optimal solutions (Concorde) and model's prediction
- Binary classification problem on edges

Learning by Exploration (RL)

 Use REINFORCE (policy gradient) to minimize the length of the tour predicted by the model at the end of decoding

And there are trade-offs for both...

Experiments

Current paradigm: Models are trained and evaluated on TSP instances of fixed sizes: 20, 50 and 100 nodes

Performance on fixed TSP

Method	Туре	TSP20			TSP50			TSP100		
		Tour Len.	Opt. Gap.	Time	Tour Len.	Opt. Gap.	Time	Tour Len.	Opt. Gap.	Time
Concorde	Specific	3.84	0.00%	(1m)	5.70	0.00%	(2m)	7.76	0.00%	(3m)
Gurobi	Generic	3.84	0.00%	(7s)	5.70	0.00%	(2m)	7.76	0.00%	(17m)
Bello et al. (2016)	AR, RNN, RL	3.84	0.10%	_	5.75	0.95%	_	8.00	3.03%	_
Deudon et al. (2018)	AR, GAT, RL	3.84	0.11%	(5m)	5.77	1.28%	(17m)	8.75	12.70%	(56m)
Deudon et al. (2018)	(+ 20PT)	3.84	0.09%	(6m)	5.75	1.00%	(32m)	8.12	4.64%	(5h)
Kool et al. (2019)	AR, GAT, RL	3.84	0.08%	(5m)	5.73	0.52%	(24m)	7.94	2.26%	(1h)
Ours (arXiv '19)	NAR, GCN, SL	3.84	0.10 %	(20s)	5.71	0.26 %	(2m)	7.92	2.06 %	(10m)
Ours (arXiv '19)	(+ shortest h.)	3.84	0.01 %	(12m)	5.70	0.01 %	(18m)	7.87	1.39 %	(40m)

End-to-end solvers can't compete with OR solvers yet, but...

Performance: Supervised learning?

Speed: Non-autoregressive?

Performance on fixed TSP

Method	Туре	TSP20			TSP50			TSP100		
		Tour Len.	Opt. Gap.	Time	Tour Len.	Opt. Gap.	Time	Tour Len.	Opt. Gap.	Time
Concorde	Specific	3.84	0.00%	(1m)	5.70	0.00%	(2m)	7.76	0.00%	(3m)
Gurobi	Generic	3.84	0.00%	(7s)	5.70	0.00%	(2m)	7.76	0.00%	(17m)
Bello et al. (2016)	AR, RNN, RL	3.84	0.10%	_	5.75	0.95%	_	8.00	3.03%	_
Deudon et al. (2018)	AR, GAT, RL	3.84	0.11%	(5m)	5.77	1.28%	(17m)	8.75	12.70%	(56m)
Deudon et al. (2018)	(+ 20PT)	3.84	0.09%	(6m)	5.75	1.00%	(32m)	8.12	4.64%	(5h)
Kool et al. (2019)	AR, GAT, RL	3.84	0.08%	(5m)	5.73	0.52%	(24m)	7.94	2.26%	(1h)
Ours (arXiv '19)	NAR, GCN, SL	3.84	0.10 %	(20s)	5.71	0.26 %	(2m)	7.92	2.06 %	(10m)
Ours (arXiv '19)	(+ shortest h.)	3.84	0.01 %	(12m)	5.70	0.01 %	(18m)	7.87	1.39 %	(40m)
Ours (NeurIPS '19)	AR, GAT, SL	3.84	0.01%	(5m)	5.70	0.04%	(24m)	7.86	1.25%	(1h)
Ours (NeurIPS '19)	AR, GAT, RL	3.84	0.09%	(5m)	5.72	0.59%	(24m)	7.97	2.68%	(1h)
Ours (NeurIPS '19)	AR, GCN, SL	3.84	0.01%	(5m)	5.72	0.27%	(24m)	7.96	2.62%	(1h)
Ours (NeurIPS '19)	AR, GCN, RL	3.84	0.10%	(5m)	5.73	0.76%	(24m)	7.97	2.66%	(1h)

Performance: Supervised learning **Speed**: Non-autoregressive

For small instances, the model is able to confidently identify most of the tour edges in the edge probability distribution without beam search

As instance size increases, edge probability distributions reflects the combinatorial explosion in TSP

Beam search is essential for finding the optimal tour for more complex instances

Beam search is essential for finding the optimal tour for more complex instances

- Bengio, Lodi, Prouvost, 2018

Generalization to variable TSP sizes

Optimality gap vs. TSP size, for NAR models when using beam search (with width = 1,280)

Generalization: impact of architecture

Optimality gap vs. TSP size, for NAR and AR models (both trained with SL)

Generalization to variable TSP sizes

Optimality gap vs. TSP size for NAR and AR models (both trained with SL)

Generalization: impact of learning paradigm

Sampling (1,280 solutions)

Optimality gap vs. TSP size, for AR models trained with RL and SL

Generalization: large-scale instances

Beam search (1,280 solutions)

Optimality gap vs. TSP size, for AR models trained with RL and SL

Generalization: large-scale instances

Optimality gap vs. TSP size, for AR models trained with RL and SL

End-to-end pipeline for OR problems

Next steps:

Where can we innovate for better scale-invariant generalization?

Questions?

Get the slides:

Chaitanya Joshi

Research Assistant Nanyang Technological University

chaitanya.joshi@ntu.edu.sg

chaitjo.github.io

twitter.com/chaitjo

github.com/chaitjo

