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Systems with geometric & relational structure
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Geometric Graph Neural Networks

Fundamental tool for machine learning on geometric graphs

Geometric . Geometric

. .
GNN Prediction

* Functional properties?
* Ligand binding affinity?

* Ligand efficacy?

[1] Gligorijevic et al., DeepFRI, Nature Communications, 2021. [2] Zhang et al., GearNet, ICLR, 2023. [3] Townshend et al., ATOM3D, NeurlPS, 2021.



Geometric Graph Neural Networks

Fundamental tool for machine learning on geometric graphs

Geometric 3 Geometric
Graph GNN

(Generative . Geometric
Model Graph

[1] Corso, Stark, Jing, et al., DiffDock, ICLR, 2023. [2] Ingram et al., Chroma, 2022. [3] Dauparas et al., ProteinMPNN, Science, 2022.



Geometric Graph Neural Networks

Fundamental tool for machine learning on geometric graphs

Current _ Geometric _ Next
State GNN State
Dynamics
Simulator

[1] Batzner et al., NequlP, Nature Communications, 2022. [2] Fu et al., Forces are not enough, arXiv 2022.



Timeline of Geometric GNN architectures

Categorised by intermediate features within layers

S
PR ° ® ® ° ®
A\ SchNet CGCNN PhysNet DimeNet GemNet, GearNet,
SphereNet, ComENet
Graphormer
2017 2018 2019 2020 2021 2022
&
& ® ® ® ® ®
S Tensor Field Cormorant GVP-GNN, E(n)-GNN, MACE,
Networks SE(3) Transformer PaiNN, Equiformer,
NequlP, ClofNet

SEGNN



Geometric GNN land

An informal taxonomy of approaches

Geometric GNNs

i}

Message passing without
canonical reference frame
Tensor Field Networks
E(n)-GNN
GVP-GNN
MACE




Axes of Geometric GNN expressivity

Key takeaway: deeper understanding of (reference-free) Geometric GNN design space

Body Order of Layer
Many-body
3 O
Distances, GVPTGNN’
Angles PaiNN
2 O
Distances E(n)-GNN
//Q //\/ \Q
S
Depth N 2&@

@ Multi Atomic
Cluster Expansion

(MACE)

@® Iensor Field
Networks

Tensor Order
of Features

1. Invariant layers: limited

expressivity, cannot distinguish
one-hop identical geometric
graphs.

. Equivariant layers: distinguish

larger classes of graphs,
propagate geometric
information beyond local
neighbourhoods.

. Demonstrates utility of higher

order tensors & scalarisation
for maximally powerful
geometric GNNSs.



Background:
Graph Neural Networks
for Geometric Graphs



Normal graphs

A graph is a set of nodes connected by edges

QTLX]'3

“~p Scalar features &

. X N adjacency matrix

E.g. atom type



Normal Graph Neural Networks

Message passing updates node features using local aggregation

layer O
E m;; o

]GN layer 1
(D—QO T 1
- | |

e
ng _ f(siasj) [ 7 m 7 aye€r

m® .= Aca ( £(s, Sgt)) jeN, }}) | Computation tree:
Message passing gathers &
s .= Upp (Sgt) | mz@) | propagates features beyond

local neighbourhoods.



Geometric graphs

Each node is:
« embedded in Euclidean space e.g. atoms in 3D
 decorated with geometric attributes s.a. velocity

o G- (4.5 XV

- Geometric features*
n X3
G

y S’L E R @ & Coordinates
| ) Z }—iz c RS - nXx3
s {;z - RS

* We work with a single vector feature per node, but our setup generalises to multiple vector features and higher-order tensors.




Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Rotations & Reflections (), € & act on only vectors V' and coordinates X:

=" X; = QgX;
rllh V; — ngz

Scalar features remain unchanged — invariant.

* We use & to denote rotations SO(d) or rotations and reflections O(d)



Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Translations ¢t € T (d) act on only the coordinates X

Scalar and vector features remain unchanged — invariant.



Building blocks of Geometric GNNs

Normal GNNs do not retain the transformation semantics:
o Scalar features must be updated in an invariant manner.
* Vector features must be updated Iin an equivariant manner.

Q, €6 Q, €6
E‘ '<) E‘ '4)
o0 o0
(8,9,%) 8.V, X
e P
* ..........
... Qg c®B

Invariant functions vs. Equivariant functions



Geometric GNN message passing

Geometric GNNSs:
* update scalar and (optionally) vector features
* aggregate and update functions which retain transformation semantics

m,”,m;" == Acc ({{( s e @) | eN; }}> (Aggregate)

] ) 7, 7

SED S+ . 1pp (( (t) 5@) (m(t) ol ))> (Update)

[/



Design Space of
Geometric GNNs

 Body order of scalarisation
* Invariance vs. Equivariance
 Tensor order of features

[1] Batatia, Batzner, et al., The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials, 2022.



B-invariant Geometric GNNs

Only update scalar features via scalarising local geometric information

Body Order
of Layer

Many-body T »

3
Key design choice: Triplets
Body order of
scalarisation ,
Pairwise

Tensor Order
of Features

1
| | >
S & N K

Depth



SchNet (]

SchNet uses relative distances |Zi — Z;|| to scalarise local geometry

E mz-j

JEN;

Relative distances are

mz-j — f(Sj, HJ_E’L]H) invariant to global
rotations & translations.

s =804 3 (s 18 - )
JjEN;

[1] Schitt et al., SchNet, Journal of Chemical Physics, 2018. [3] Li et al., IROS, 2020. Similar architecture for multi-agent robotics.
[2] Xie and Grossman, CGCNN, Phys. Rev. Letters, 2018. [4] Sanchez-Gonzalez et al., ICML, 2020. Similar architecture for physical simulation



DimeNet !

DimeNet uses distances |Zi; || and angles ®i; - Lik among triplets

m;ji, = f(S;, Sk, || X, Xij - Xir)

@ Body order of scalarisation:
number of nodes involved In
computing local invariant scalars.

sV = S (s, S0 N B (s s 7], @ @) )

JEN; keNi\{J}

[1] Gasteiger et al., DimeNet, ICLR, 2020.



Cartesian ®-equivariant Geometric GNNs

Update scalar and vector features in cartesian basis

Body Order
of Layer

Many-body 5
| - I — @ oo
Key design choice: Triplets GVEGNN
From invariant to .
equivariant | .
message passing i 2 E(n)-GNN

Tensor Order
of Features

Depth =~



PaiNN U]

Update both scalar & vector features by propagating geometric messages

Ensuring equivariance:
“e_» Jated non-linearity, no RelL.U
% on vectors, limited to sum/
dot/cross products.

S<t—|—1) .

i =3 p (80 @) o6 + S0 g (s, 18] © 2,

JEN; jEN;

[1] Schitt et al., PaiNN, ICML, 2021. [2] Satorras et al., E(n)-GNN, ICML, 2021. [3] Jing et al., GVP-GNN, ICLR, 2020.



Spherical ®-equivariant Geometric GNNs

Update higher order spherical tensor features

Body Order

of Layer
Many-body T ------------------------- R, ® Multi Atomic
5 5 : Cluster Expansion
’ (MACE)
| | 3 e e
Key design choice: Triplets
Tensor order of | | |
eqUivariant features 2 L ........................ . Tensor Fleld
Pairwise 5 5 . Networks

[ Tensor Order
of Features
YV D
\7’/ & o
Y

Depth T &



Tensor Field Networks (1!

 Higher order spherical tensors as node features hig € RE*TT 1 =0,...,L
 ...updated via tensor products @ of neighbourhood features

- - - - - - 20+1
* ...with spherical harmonic expansion of displacement Y) (245) € R¥T

Z m;;

- Tensor product weights:
¥ w = frBF (85, [|[Z]])

Connection with
cartesian basis:

hii—o € R™/

~

il
”
.

ﬁt o~

h(t_l_l) h(t) 4 Z Y mw R h(t)
JEN;

| 40e$ §9¢ 003 8 o

[1] Thomas, Smidt, et al., TFN, 2018. [2] Brandstetter, Hesselink, et al., SEGNN, ICLR,2022. [3] Batatia et al., MACE, NeurlPS, 2022. [4] Geiger and Smidt, e3nn, 2022.



Motivation:
How powerful are
Geometric GNNs?

 How do key design choices impact expressive power?
 Connect theoretical limitations — practical implications




Distinguishing geometric neighbourhoods

Can you tell these two local neighbourhoods apart using
the unordered set of distances and angles, only?/?]

Relevant for local
scalarisation in
geometric GNNs —
the ideal aggregator
would distinguish all
neighbourhoods.

[1] Bartok et al., Phys. Rev. B, 2013.  [2] Pozdynakov et al., Incompleteness of atomic structural representations, Phys. Rev. Letters, 2020.



Discriminating geometric graphs

What if all local nheighbourhoods have identical invariant scalars?!]
Pair of graphs cannot be discriminated using only scalars.

How to distinguish them?
Relative orientation of local
neighbourhoods, i.e.
geometric information.

[1] Schitt et al., PaiNN, ICML, 2021.



® Central idea:
Formalise the problem of

In the context of
geometric GNNs.




Recap: Normal Graph Isomorphism

Are two graphs the same, but ‘drawn’ differently?

e Two attributed graphs ¢, H are isomorphic if there exists an edge-

preserving bijection 0 : V(9) = V(H) such that 5;”) = 8&’1‘3

* Weisfeiler-Leman (WL) algorithm tests whether two graphs are isomorphic.

[1] Read and Corneil, The graph isomorphism disease &, Journal of graph theory, 1977.



Recap: Weisfeiler-Leman Test (WL)

WL iteratively updates node colours via an injective colouring function -
unique colour to each unique neighbourhood pattern.

. (0)
» WL assigns a colour ¢ € C from a countable space of colours to each node.

HASH (o { ) HASH(® (@ ® @}) —_ |
P 2 WL updates the nc%c)!e colouring by
producing a new ¢ .
HASH(© HASH(® {® @ }) C; €Ny,

where HASH is an injective map that
assigns a unique colour to each input.

* Given two graphs 9, H, if {ci) # {{C§H>}}, then the graphs are not isomorphic.

 Otherwise, WL cannot distinguish the two graphs (as in this example).



Recap: WL upper-bounds GNN expressivity

Message passing GNNs can be at most as powerful as WL at distinguishing
non-isomorphic graphs, if their aggregate-update steps are injective.

gskip(]-]-a 2) gskip(llag)

* WL has become an abstract tool for understanding the
capabillities and theoretical limitations of GNNSs.

 Major driver of progress towards more expressive GNNSs.

[1] Xu et al., ICLR, 2019. [2] Morris et al., AAAI, 2019. [3] Maron et al., NeurlPS, 2019. [4] Loukas, ICLR, 2020. [5] Bodnar, Frasca, et al., NeurlPS, 2021.



- Research gap:
Theoretical tools for normal GNNs,
such as the WL framework, are

due to physical symmetries.



Geometric graph isomorphism

G, H are geometrically isomorphic if:

* there exists an attrlbuted graph isomorphism 0 : V(G) — V(H)
e ...S.t. geometric attributes are equivalent for all nodes, up to some
rotation &s € © and some translation ¢ € T(d);

g) =(9) =9 H S(H —(H
(s9,87.&7) = (si), QuBy1, Qo) +1))



Geometric
Weisfeller-Leman Test

Theoretical upper bound on Geometric GNN expressivity




Intuition: generalising WL to geometric graphs

Key property: node-centric procedure, injective aggregation from local neighbours

S; &€ Rf E} }—EZ c R?)
. 4§ {;z - R?)
Standard WL Geometric WL
* Neighbourhood: set of invariant * Neighbourhood: set of invariant + equivariant
scalar features. geometric features.
* Node colouring: unigue for every * Node colouring: unigue for every neighbourhood type
neighbourhood type, i.e. (central node, i.e. (central node, neighbourhood) pattern.

neighbourhood) pattern. * Geometric information: how that neighbourhood type is

oriented/rotated in space.

2= HASH(® {o o})
a0 HASH(® {{® @ }) O




GWL Property #1: Orbit injectivity of colours

If two neighbourhoods are the same up to rotations, their colours
should be the same, i.e. the colouring must be &-orbit injective.

Q, e

| <&
\,\ ‘)))

/
C;

.

C;

Z

25

The &-orbit injective colouring function is also ®-invariant by definition.




GWL Property #2: Preservation of local geometry

o Satisfying Property #1 (orbit injectivity) will by definition lose orientation
Information — this is no longer injective, unlike WL.

* Thus, we must update auxiliary geometric information variables 9: in a
way that is injective and $-equivariant.




GWL Step O: Initialisation Step

We assign to each node:

/
 a scalar node colour ¢ € C

* an auxiliary object g: for geometric information associated with
the sub-graph around each node i




GWL Step 1: Aggregate local information

Copy-paste aggregation: At each iteration, aggregate the geometric

t
information around node i into a new (nested) object 92( ).

g\ = (Vg Y g ) |5 e N

=
S;, V; t=20

5091 (509 b9 (509 1=

» This nested aggregation is injective and ®-equivariant

(1)
* Each iteration can progressively expand 9: to larger +-hop subgraphs ‘/\/z'(t)



GWL Step 2: Update node colouring

t (t) : :
Node colouring CE ) summarises the information in 9; ' by using &-orbit

injective and &-invariant colouring function (I-HASH):

In geometric GNNs, I-HASH corresponds to scalarisation
from subsets of neighbours (body order).



GWL Step 3: Termination upon stable colouring

t=20 t=1 t =2
(L e
: i
G ()

= G1 # Go
v Cl()g) Cz()?z?)
© ) O O O (U

Given geometric graphs G, H, if "% # {<""}, then they are not
isomorphic. Otherwise, GWL cannot distinguish them.




Upper bounding geometric GNN expressivity

Equivariant GNNs can be at most as powerful as GWL in
distinguishing non-isomorphic geometric graphs.

2

—
JEN, m,;

0:=——0 (= Hasi(s), g = (5.

iJ

m® il = Ao ({7,050, 50,3 e ny) 9= (@ g AT g T e N

S (80, () A = Lasn (g,

...and equivariant GNNs have the same expressive power as GWL if equipped
with injective aggregation and injective/orbit injective update functions.



Invariant version of GWL

IGWL is a restricted version of GWL which
 only updates node colours using orbit injective I-HASH function

 does not propagate geometric information

et _IHASH(( U8 (e A)UEN}H

%oa ! “ged Noea

=>g12’gz




Role of depth
In geometric GNNs

Propagating geometric information



k-hop distinct and identical geometric graphs

Consider two geometric graphs such that the underlying
attributed graphs are isomorphic:

ldentical for all

1-hop 1dentical node-bijection
I I pairs
2-hop distinct
@ -

* We also considers the general case without an attributed graph isomorphism in the full paper.



Characterising what GWL can distinguish

GW.L can distinguish
* any k-hop distinct geometric graphs
* k iterations are sufficient

t=20 t=1 t =2
0 A0
G1 ()

)
“b(3)

S

= 1 # G




Characterising what IGWL cannot distinguish

Any number of iterations of IGWL cannot distinguish any 1-hop
Identical geometric graphs

t=20 t=1 t=2
® 0
%—@—% C@Ob—@—Q\Q
G, O Z

G; oD o2
“ ‘
© bm) @ o 9 (O

=>g1?2g2




Comparing the expressivity of GWL & IGWL

GWL is strictly more powerful than IGWL, as GWL can distinguish
a broader class of geometric graphs.

(1 T® forgwL, ~ ~ 7 scalarmsg. 7@ for IGWL
0 a 6 s Vz —>» geometric msg. iteration t — 0
G1 j Geometric
information
| ' cannot flow
@ @ @ X Xji  Xkm sz’ from leaves
@ ) to root

gZ [Slavl] [Siavi] [Smavm] Si, V

|IGWL and invariant GNNs fail to understand how various
1-hop neighbourhoods in a graph are oriented w.r.t. each other.



Limitations of invariant
message passing

Failure to capture global geometry



Invariant GNNs fail for non-local geometric properties

IGWL and invariant GNNs cannot decide:/“]
(1) area, volume of bounding box/sphere; (2) distance from

centroid; and (3) dihedral angles.

1(-2,1,—1)

1(-2,1,—1)

i (0,0,0 k(1,0,0
( ) ( ) m(2,1.1)

j (_]—7 Oa O)

‘e
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.
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
~
-
]
.
.
.
.
.
.
.
.
‘e
.

j(-1,0,0) 4(0,0,0) k(1,0,0)

01 ™ {1 G

How to overcome these limitations?
Pre-computing non-local geometric properties as input featuresll2l3]

[1] Gasteiger et al., GemNet, NeurlPS, 2021. [2] Liu et al., SphereNet, ICLR, 2022. [3] Wang et al., ComENet, NeurlPS, 2022. [4] Garg et al., ICML, 2020.



When is invariance ‘all you need’?

IGWL has the same expressive power as GWL for fully connected
geometric graphs, i.e. point clouds.

Supported by the empirical success of geometric ‘graph Transformers’[1l2]

[1] Joshi, Transformers are GNNs, The Gradient, 2020. [2] Shi et al., Benchmarking Graphormer, 2022.



Synthetic experiments on
Geometric GNN expressivity

Code + Geometric GNN 101 tutorial:

github.com/chaitjo/geometric-gnn-dojo



http://github.com/chaitjo/geometric-gnn-dojo

Experiment 1: Depth, non-local properties, & oversquashing

(Theory) GWL: perfectly propagate geometric information with each iteration.
(Practice) Geometric GNNs: stacking layers may distort distant information?

ey @%W ------ 0Q

k nodes

k nodes

* k-chain graphsl'!: (

k

2

+1
i ) hop distinguishable geometric graphs — Thus, ( i

GWL iterations are theoretically sufficient to distinguish them.

* We train geometric GNNs with increasing #layers to distinguish k-chains.

[1] Generalisation of the example from Schitt et al., ICML, 2021.




Experiment 1: Depth, non-local properties, & oversquashing

k nodes

S

(k = 4-chains) Number of layers
GNN Layer | & El+1=3 |&]+2 [£]+3 5] 44
~ IGWL 50% 50% 50% 50% 50%
Zz SchNet 500+£0.00 50.0+x0.00 50.0+£000 50.0+0.00 50.0+0.00
—  DimeNet 500£0.00 50.0+£0.00 50.0+£000 50.0+0.00 50.0+0.00
GWL 50% 100 % 100% 100% 100 %
~ E-GNN 50.0+0.0 50.0 £ 0.0 50.0 £ 0.0 500+£00 100.0 0.0
'g GVP-GNN 50.0£0.0 100,000 100.0x0.0 100.0x0.0 100.0x0.0
M TEN 50.0 £0.0 50.0 £ 0.0 50.0£00 80.0+£24.5 85.0+229
MACE 50.0£0.0 90.0+£20.0 90.0+£20.0 95.0£15.0 95.0x15.0

* |nvariant GNNs are unable to distinguish £-chains (as expected).

* Equivariant GNNs may require more iterations that prescribed by GWL — preliminary
evidence of oversquashing of geometric information across multiple layers.



Experiment 2: Higher order tensors & rotational symmetry

(Theory) GWL: perfectly aggregates equivariant geometric information via copying.
(Practice) Geometric GNNSs: tradeoffs for cartesian vs. spherical, and tensor rank?

O—0O—0O (U ([
0‘0
OO

27
» L-fold symmetric structure: does not change when rotated by an angle

around a point (in 2D) or axis (3D).

* We consider two distinct rotated versions of each L-fold symmetric structure
and train single layer equivariant GNNs to identify the two orientations.



Experiment 2: Higher order tensors & rotational symmetry

oo A, ok

Rotational symmetry
GNN Layer 2 fold 3 fold 5 fold 10 fold

TEN/MACE;—, 50.0 £ 0.0 50.0 £ 0.0 50.0£ 0.0 50.0 £ 0.0

TEN/MACE;—o 100.0£0.0 50.0+0.0 50.0+£0.0 50.0 £ 0.0
TEN/MACE},—3 100.0+0.0 100.0+0.0 50.0+0.0 50.0+0.0
TEN/MACE;,—5 100.0£ 0.0 100.0x£0.0 100.0x0.0 50.0x0.0
TEN/MACE;—19 100.0+00 100.0%0.0 100.0x0.0 100.0%0.0

Spherical

» Layers using order L tensors are unable to identify the orientation of structures
with rotation symmetry > L-fold.

 Why? Spherical harmonics: underlying orthonormal basis, rotationally symmetric.
* |ssue is particularly prevalent for E-GNN and GVP-GNN (Tensor order 1).



Experiment 3: Body order & neighbourhood fingerprints

Counterexamplesl'l: pairs of local neighbourhoods that cannot be
distinguished when comparing their set of k-body scalars.

3-body
counterex.
A= (a,,0,a, i
2-body ’ BB (+h~)+b b,)
counterex AR R e 4-body chiral 4-body non-chiral
. I ¢+ = (07 C‘ZMCZ,) counterex. counterex.

We train single layer geometric GNNs to distinguish the counterexamples.

[1] Pozdynakov et al., Phys. Rev. Letters, 2020. [2] Pozdynakov and Ceriotti, 2022.



Experiment 3: Body order & neighbourhood fingerprints

Counterexample from Pozdnyakov et al. [34]

2-body 3-body 4-body

NN Layer (Fig.1(b)) (Fig.2(D)

> SchNeta pody 50.0+0.0 50.0+0.0 50.0+0.0

= DimeNet3_pody 1000+ 0.0 50.0+0.0 50.0+0.0

. E-GNNz_bOdy 50.0 £ 0.0 50.0+£0.0 50.0 £ 0.0

E GVP-GNN3poqy 1000 £0.0 50.0+0.0 50.0+0.0

[g‘ TEN2body 50.0+0.0 50.0+0.0 50.0+0.0

’6-:3\ MACE3 pody 100,0+0.0 50.0+0.0 50.0+0.0

5’ MACEj4-pody 100.0+0.0 100.0=0.0 50.0+0.0
MACEs_pody 100.0+0.0 100.0=0.0 100.0 = 0.0

Layers with body order & cannot distinguish the corresponding counterexample.



Conclusion
& Key Takeaways




Axes of Geometric GNN expressivity

Key takeaway: deeper understanding of Geometric GNN design space

Body Order of Layer
Many-body
3 O
Distances, GVPTGNN’
Angles PaiNN
2 O
Distances E(n)-GNN
//Q //\/\Q
S
Depth N é}&@

@ Multi Atomic

Cluster Expansion
(MACE)

@® Iensor Field
Networks

} Iensor Order
N S  of Features

1. Invariant layers: limited

expressivity, cannot distinguish
one-hop identical geometric
graphs.

. Equivariant layers: distinguish

larger classes of graphs,
propagate geometric
information beyond local
neighbourhoods.

. Utility of higher order tensors

& scalarisation for maximally
powerful geometric GNNs.



What'’s in the full paper?

» PDF: arxiv.org/abs/2301.09308

On the Expressive Power of GGeomelric Graph Neural Networks

Q Chaitanya K. Joshi® Cristian Bodnar” Simon V. Mathis
University ot Cambrdge, LK Limversity of Cambndae, [TK Lriversity of UCambrndge, UK
cha tanya. josni@c) . can.ac.nk ch2068can .ar.nk s aom.wvath  s0cl .can.ac. uk
Tace Cohen Pletro Lid
- Quzlcomm Al Rescarch, The Netherlands! University of Cambridze. UX
* Geometric WL framework: more +
| (-\J

Abstract

=
| | | | | |
eneral results. details on scalarisation = i cxpressive power of Graph Neoeal Netwoeks (GN) has bosa tudied -
5 — tensively through the Wersfaler-Leman (WL graph isomorphism test. However,
cn
(g |

stnndard GNNs and the WL framework are inapplicable for geometrie graphs
embedded in Euclidean space. such as biomolecules, materials, and other physical

systems, In this work, we propose a geometric version of the WL test (GWL)
y . v for discrimunating geometic graphs while respecting the undedving physical

synuneiies, permutations, olation, reflection, and tanslation. We use GWL

N

— to charactense the expressive power of geametne GNNs that are invariant or
- equivanant to physical symmetries in terms of distingmshing geometne graphs.
) GWL. unpacks how key design choices influence geometric GNN expressivity:

— (1) Invariant layers have limited expressivity as they cannot disunguish one-hop

[ = [ [
® [1 ] [ idenucal geometric graphs: (2) Equivanant layers disunguish a larger class of
o n n e c I O n S WI u n Ive rsa I y - . graphs by propagating geonetoe information beyond local neighbourhoods; (3)

,)’;: Higher urder tensors and sealansaoon enabke maximeally powerlul geometric GNNs;
5 anc (4) GWL’s discnimination-based perspective 15 equivalznt to universal ap-
u y = B " proximation. Synthenic experiments supplementing onr results arc avalahle at
equivalence between model’s ability to 5
-" Bady Dvaer of Layer
— A
u n u u - Many-hexdy o MultiAtoeri
) L 8 | i sparsion
discriminate geometrlc graphs and
2 s .
i imation. (213 : | ek
universal approximaton. >

o lewsor Under
of Fearurer

()

Future work: towards maximally NV R

Figure I: Axes of geometric GNN expressivity: (1) Svalarization body order:. incregsing body
arder of scalarsation butlds expressive local neighbourtheaod descriptars; (2) Tensor order: higher

[ (] (] (]
arder ~'r,l'u-.rir'al teasors determine the relative arientation of ‘c‘ighﬁmlrhrﬂrh; and [3) lepth deep
W u I u I I I equivariant layers propagate geametric information heyond local neighbourhoods.
fro m ( i W I & e et I'i C U‘ i hd “Equal frst authors.  "Quakeomm Al Rescarch is an instiative of Qualeomm “Technologies, Ine
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