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Abstract

Computational RNA design tasks are often posed as inverse problems, where
sequences are designed based on adopting a single desired secondary structure
without considering 3D geometry and conformational diversity. We introduce
gRNAde, a geometric RNA design pipeline operating on 3D RNA backbones to
design sequences that explicitly account for structure and dynamics. Under the
hood, gRNAde is a multi-state Graph Neural Network that generates candidate
RNA sequences conditioned on one or more 3D backbone structures where the
identities of the bases are unknown. On a single-state fixed backbone re-design
benchmark of 14 RNA structures from the PDB identified by Das et al. [2010],
gRNAde obtains higher native sequence recovery rates (56% on average) compared
to Rosetta (45% on average), taking under a second to produce designs compared
to the reported hours for Rosetta. We further demonstrate the utility of gRNAde on
a new benchmark of multi-state design for structurally flexible RNAs, as well as
zero-shot ranking of mutational fitness landscapes in a retrospective analysis of a
recent RNA polymerase ribozyme structure.
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Figure 1: The gRNAde pipeline for 3D RNA inverse design. gRNAde is a generative model for
RNA sequence design conditioned on backbone 3D structure(s). gRNAde processes one or more RNA
backbone graphs (a conformational ensemble) via a multi-state GNN encoder which is equivariant to
3D roto-translation of coordinates as well as conformer order, followed by conformer order-invariant
pooling and autoregressive sequence decoding.
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1 Introduction

Why RNA design? Historical efforts in computational drug discovery have focussed on designing
small molecule or protein-based medicines that either treat symptoms or counter the end stages
of disease processes. In recent years, there is a growing interest in designing new RNA-based
therapeutics that intervene earlier in disease processes to cut off disease-causing information flow
in the cell [Damase et al., 2021, Zhu et al., 2022]. Notable examples of RNA molecules at the
forefront of biotechnology today include mRNA vaccines [Metkar et al., 2024] and CRISPR-based
genomic medicine [Doudna and Charpentier, 2014]. Of particular interest for structure-based design
are ribozymes and riboswitches in the untranslated regions of mRNAs [Mandal and Breaker, 2004,
Leppek et al., 2018]. In addition to coding for proteins (such as the spike protein in the Covid vaccine),
naturally occurring mRNAs contain riboswitches that are responsible for cell-state dependent protein
expression of the mRNA. Riboswitches act by ‘switching’ their 3D structure from an unbound
conformation to a bound one in the presence of specific metabolites or small molecules. Rational
design of riboswitches will enable translation to be dependent on the presence or absence of partner
molecules, essentially acting as ‘on-off’ switches for highly targeted mRNA therapies in the future
[Felletti et al., 2016, Mustafina et al., 2019, Mohsen et al., 2023].

Challenges of RNA modelling. Despite the promises of RNA therapeutics, proteins have instead
been the primary focus in the 3D biomolecular modelling community. Availability of large-scale
protein structures from the PDB combined with advances in deep learning for structured data
[Bronstein et al., 2021, Duval et al., 2023] have revolutionized protein 3D structure prediction
[Jumper et al., 2021] and rational design [Dauparas et al., 2022, Watson et al., 2023]. Applications
of deep learning for computational RNA design are underexplored compared to proteins due to
paucity of 3D structural data [Schneider et al., 2023]. Most tools for RNA design primarily focus
on secondary structure without considering 3D geometry [Churkin et al., 2018] and use non-learnt
algorithms for aligning 3D RNA fragments [Han et al., 2017, Yesselman et al., 2019], which can be
restrictive due to the hand-crafted nature of the heuristics used.

In addition to limited 3D data for training deep learning models, the key technical challenge is that
RNA is more dynamic than proteins. The same RNA can adopt multiple distinct conformational
states to create and regulate complex biological functions [Ganser et al., 2019, Hoetzel and Suess,
2022, Ken et al., 2023]. Computational RNA design pipelines must account for both the 3D geometric
structure and conformational flexibility of RNA to engineer new biological functions.

Our contributions. This paper introduces gRNAde, a geometric deep learning-based pipeline for
RNA inverse design conditioned on 3D structure, analogous to ProteinMPNN for proteins [Dauparas
et al., 2022]. As illustrated in Figure 1, gRNAde generates candidate RNA sequences conditioned
on one or more backbone 3D conformations, enabling both single- and multi-state fixed-backbone
sequence design. The model is trained on RNA structures from the PDB at 4.0Å or better resolution
(12K 3D structures from 4.2K unique RNAs) [Adamczyk et al., 2022], ranging from short RNAs
such as riboswitches, aptamers and ribozymes to larger ribosomal RNAs.

We demonstrate the utility of gRNAde for the following design scenarios:

• Improved performance and speed over Rosetta. We compare gRNAde to Rosetta [Leman
et al., 2020], the state-of-the-art physically based tool for 3D RNA inverse design, for single-
state fixed backbone design of 14 RNA structures of interest from the PDB identified by Das
et al. [2010]. We obtain higher native sequence recovery rates with gRNAde (56% on average)
compared to Rosetta (45% on average). Additionally, gRNAde is significantly faster than Rosetta
for inference; e.g. sampling 100+ designs in 1 second for an RNA of 60 nucleotides on an A100
GPU, compared to the reported hours for Rosetta.

• Enables multi-state and partial RNA design, which were previously not possible with Rosetta.
gRNAde with multi-state GNNs moderately improves sequence recovery over an equivalent
single-state model on a new benchmark of structurally flexible RNAs, especially for surface
nucleotides which undergo positional or secondary structural changes.

• Zero-shot learning of RNA fitness landscape. In a retrospective analysis of mutational fitness
landscape data for an RNA polymerase ribozyme [McRae et al., 2024], we show how gRNAde’s
perplexity, the likelihood of a sequence folding into a backbone structure, can be used to
rank mutants based on fitness in a zero-shot/unsupervised manner and outperforms random
mutagenesis for improving fitness over the wild type in low throughput scenarios.
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Figure 2: gRNAde featurizes RNA backbone structures as 3D geometric graphs. Each RNA
nucleotide is a node in the graph, consisting of 3 coarse-grained beads for the coordinates for P, C4’,
N1 (pyrimidines) or N9 (purines) which are used to compute initial geometric features and edges to
nearest neighbours in 3D space. Backbone chain figure adapted from Ingraham et al. [2019].

2 The gRNAde pipeline

2.1 The 3D RNA inverse folding problem

Figure 1 illustrates the RNA inverse folding problem: the task of designing new RNA sequences
conditioned on a structural backbone. Given the 3D coordinates of a backbone structure, machine
learning models must generate sequences that are likely to fold into that shape. The underlying
assumption behind inverse folding (and rational biomolecule design) is that structure determines
function [Huang et al., 2016]. To the best of our knowledge, gRNAde is the first explicitly multi-state
inverse folding pipeline, allowing users to design sequences for backbone conformational ensembles
(a set of 3D backbone structures) as opposed to a single structure. Our multi-state design framework
aims to better capture RNA conformational dynamics which is often important for functionality in
structured RNAs [Ken et al., 2023].

2.2 RNA conformational ensembles as geometric multi-graphs

Featurization. The input to gRNAde is a set of 3D RNA backbone structures (a conformational
ensemble) and the corresponding sequence of n nucleotides, for instance via PDB files. As shown in
Figure 2, gRNAde builds a geometric graph representation for each input structure:

1. We start with a 3-bead coarse-grained representation of the RNA backbone, retaining the
coordinates for P, C4’, N1 (pyrimidine) or N9 (purine) for each nucleotide [Dawson et al., 2016].
This ‘pseudotorsional’ representation can describe RNA backbone conformations completely in
most cases while reducing the size of the torsional space [Wadley et al., 2007].

2. Each nucleotide i is assigned a node in the geometric graph with the 3D coordinate x⃗i ∈ R3

corresponding to the centroid of the 3 bead atoms. Random Gaussian noise with standard
deviation 0.1Å is added to coordinates during training to prevent overfitting on crystallisation
artifacts, following Dauparas et al. [2022]. Each node is connected by edges to its 32 nearest
neighbours as measured by the pairwise distance in 3D space, ∥x⃗i − x⃗j∥2.

3. Nodes are initialized with geometric features analogous to the featurization used in protein
inverse folding [Ingraham et al., 2019, Jing et al., 2020]: (a) forward and reverse unit vectors
along the backbone backbone from the 5’ end to the 3’ end, (x⃗i+1 − x⃗i and x⃗i − x⃗i−1); and (b)
unit vectors, distances, angles, and torsions from each C4’ to the corresponding P and N1/N9.

4. Edge features for each edge from node j to i are initialized as: (a) the unit vector from the
source to destination node, x⃗j − x⃗i; (b) the distance in 3D space, ∥x⃗j − x⃗i∥2, encoded by 32
radial basis functions; and (c) the distance along the backbone, j − i, encoded by 32 sinusoidal
positional encodings.
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Figure 3: gRNAde model architecture. One or more RNA backbone geometric graphs are encoded
via a series of SE(3)-equivariant Graph Neural Network layers [Jing et al., 2020] to build latent
representations of the local 3D geometric neighbourhood of each nucleotide within each state.
Representations from multiple states for each nucleotide are then pooled together via permutation
invariant Deep Sets [Zaheer et al., 2017], and fed to an autoregressive decoder to predict a probabilities
over the four possible bases (A, G, C, U). The probability distribution can be sampled to design
a set of candidate sequences. During training, the model is trained end-to-end by minimising a
cross-entropy loss between the predicted probability distribution and the true sequence identity.

Multi-graph representation. As described in the previous section, given a set of k structures in
the input conformational ensemble, each RNA backbone is featurized as a separate geometric graph
G(k) = (A(k),S(k), V⃗ (k)) with the scalar features S(k) ∈ Rn×f , vector features V⃗ (k) ∈ Rn×f ′×3,
and A(k), an n× n adjacency matrix. For clear presentation and without loss of generality, we omit
edge features and use f , f ′ to denote scalar/vector feature channels.

The input to gRNAde is thus a set of geometric graphs {G(1), . . . ,G(k)} which is merged into what we
term a ‘multi-graph’ representation of the conformational ensemble, M = (A,S, V⃗ ), by stacking the
set of scalar features {S(1), . . . ,S(k)} into one tensor S ∈ Rn×k×f along a new axis for the set size
k. Similarly, the set of vector features {V⃗ (1), . . . , V⃗ (k)} is stacked into one tensor V⃗ ∈ Rn×k×f ′×3.
Lastly, the set of adjacency matrices {A(1), . . . ,A(k)} are merged via a union ∪ into one single joint
adjacency matrix A.

2.3 Multi-state GNN for representation learning on conformational ensembles

The gRNAde model, illustrated in Figure 3, processes one or more RNA backbone graphs (a
conformational ensemble) via a multi-state GNN encoder which is equivariant to 3D roto-translation
of coordinates as well as to the ordering of conformers, followed by conformer order-invariant pooling
and sequence decoding. We describe each component in the following sections.

Multi-state GNN encoder. When representing conformational ensembles as a multi-graph, each
node feature tensor contains three axes: (no. of nodes, no. of conformations, feature channels). We
perform message passing on the multi-graph adjacency to independently process each conformer,
while maintaining permutation equivariance of the updated feature tensors along both the first (no. of
nodes) and second (no. of conformations) axes. This works by operating on only the feature channels
axis and generalising the PyTorch Geometric [Fey and Lenssen, 2019] message passing class to
account for the extra conformations axis; see Figure 10 and the pseudocode in the Appendix.

We use multiple rotation-equivariant GVP-GNN [Jing et al., 2020] layers to update scalar features
si ∈ Rk×f and vector features v⃗i ∈ Rk×f ′×3 for each node i:

mi, m⃗i :=
∑
j∈Ni

MSG
(
(si, v⃗i) , (sj , v⃗j) , eij

)
, (1)

s′i, v⃗
′
i := UPD

(
(si, v⃗i) , (mi, m⃗i)

)
, (2)

where MSG, UPD are Geometric Vector Perceptrons, a generalization of MLPs to take tuples of
scalar and vector features as input and apply O(3)-equivariant non-linear updates. The overall GNN
encoder is SO(3)-equivariant due to the use of reflection-sensitive input features (dihedral angles)
combined with O(3)-equivariant GVP-GNN layers.
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Our multi-state GNN encoder is easy to implement in any message passing framework and can be
used as a plug-and-play extension for any geometric GNN pipeline to incorporate the multi-state
inductive bias. It serves as an elegant alternative to batching all the conformations, which we found
required major alterations to message passing and pooling depending on downstream tasks.

Conformation order-invariant pooling. The final encoder representations in gRNAde account for
multi-state information while being invariant to the permutation of the conformational ensemble. To
achieve this, we perform a Deep Set pooling [Zaheer et al., 2017] over the conformations axis after the
final encoder layer to reduce S ∈ Rn×k×f and V⃗ ∈ Rn×k×f ′×3 to S′ ∈ Rn×f and V⃗ ′ ∈ Rn×f ′×3:

S′, V⃗ ′ :=
1

k

k∑
i=1

(
S[: , i], V⃗ [: , i]

)
. (3)

A simple sum or average pooling does not introduce any new learnable parameters to the pipeline and
is flexible to handle a variable number of conformations, enabling both single-state and multi-state
design. It may be interesting to ablate the impact of more expressive geometric GNN layers [Joshi
et al., 2023] as well as set pooling functions [Maron et al., 2020] in future iterations of gRNAde.

Sequence decoding and loss function. We feed the final encoder representations after pooling,
S′, V⃗ ′, to autoregressive GVP-GNN decoder layers to predict the probability of the four possible base
identities (A, G, C, U) for each node/nucleotide. Decoding proceeds according to the RNA sequence
order from the 5’ end to 3’ end. gRNAde is trained in a self-supervised manner by minimising a
cross-entropy loss (with label smoothing value of 0.05) between the predicted probability distribution
and the ground truth identity for each base. During training, we use autoregressive teacher forcing
[Williams and Zipser, 1989] where the ground truth base identity is fed as input to the decoder at
each step, encouraging the model to stay close to the ground-truth sequence.

Sampling. When using gRNAde for inference and designing new sequences, we iteratively sample
the base identity for a given nucleotide from the predicted conditional probability distribution, given
the partially designed sequence up till that nucleotide/decoding step. We can modulate the smoothness
or sharpness of the probability distribution by using a temperature parameter. At lower temperatures,
for instance ≤1.0, we expect higher native sequence recovery and lower diversity in gRNAde’s
designs. At higher temperatures, the model produces more diverse designs by sampling from a
smoothed probability distribution. We can also consider unordered decoding [Dauparas et al., 2022]
and masking or logit biasing during sampling, depending on the design scenario at hand. This enables
gRNAde to perform partial re-design of RNA sequences, retaining specified nucleotide identities
while designing the rest of the sequence. Similar approaches for functional protein design have been
shown to be successful in the wet lab [Sumida et al., 2024].

2.4 Evaluation metrics for designed sequences

In principle, inverse folding models can be sampled from to obtain a large number of designed
sequences for a given backbone structure. Thus, in-silico metrics to determine which sequences are
useful and which ones to prioritise in wet lab experiments are a critical part of the overall pipeline. We
currently use the following metrics to evaluate gRNAde’s designs, visualised in Appendix Figure 8:

• Native sequence recovery, which is the average percentage of native (ground truth) nucleotides
correctly recovered in the sampled sequences. Recovery is the most widely used metric for
biomolecule inverse design [Dauparas et al., 2022].

• Secondary structure self-consistency score, where we ‘forward fold’ the sampled sequences
using a secondary structure prediction tool (we used EternaFold [Wayment-Steele et al., 2022])
and measure the average Mathew’s Correlation Coefficient (MCC) to the ground truth secondary
structure, represented as a binary adjacency matrix. MCC values range between -1 and +1, with
+1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction.
Similar forward folding metrics, sometimes termed ‘designability’, have been found to correlate
with experimental success in protein design [Watson et al., 2023]1.

1It would be ideal to consider a 3D structure self-consistency score, instead. While RNA 3D structure
prediction is currently not at the same level of reliability as that for proteins, our framework is flexible enough to
include new self-consistency scores based on improved RNA structure prediction tools in the future.
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• Perplexity, which can be thought of as the average number of bases that the model is selecting
from for each nucleotide. Formally, perplexity is the average exponential of the negative
log-likelihood of the sampled sequences. A perfect model would have perplexity of 1, while
a perplexity of 4 means that the model is making random predictions (the model outputs a
uniform probability over 4 possible bases). Perplexity does not require a ground truth structure
to calculate, and can also be used for ranking sequences as it is the model’s estimate of the
compatibility of a sequence with the input backbone structure.

3 Experimental Setup

3D RNA structure dataset. We create a machine learning-ready dataset for RNA inverse design
using RNASolo [Adamczyk et al., 2022], a novel repository of RNA 3D structures extracted from
solo RNAs, protein-RNA complexes, and DNA-RNA hybrids in the PDB. We used structures at
resolution ≤4.0Å resulting in 4,223 unique RNA sequences for which a total of 12,011 structures
are available (downloaded from RNASolo on 31 October 2023). Dataset statistics are available in
Figure 9 in the Appendix, illustrating the diversity of our dataset in terms of sequence length, number
of structures per sequence, as well as structural variations among conformations per sequence.

Structural clustering. In order to ensure that we evaluate gRNAde’s generalization ability to novel
RNAs, we cluster the 4,223 unique RNAs into groups based on structural similarity. We use qTMclust
for efficiently applying US-align [Zhang et al., 2022] with a similarity threshold of TM-score >
0.45, and ensure that we train, validate and test gRNAde on structurally dissimilar clusters (see next
paragraph). We also provide utilities for clustering based on sequence homology using CD-HIT [Fu
et al., 2012], which leads to splits containing biologically dissimilar clusters of RNAs.

Splits to evaluate generalization. After clustering, we split the RNAs into training (∼4000 samples),
validation and test sets (100 samples each) to evaluate two different design scenarios:

1. Single-state split. This split is used to fairly evaluate gRNAde for single-state design on a set of
RNA structures of interest from the PDB identified by Das et al. [2010], which mainly includes
riboswitches, aptamers, and ribozymes (full listing in Table 1). We identify the structural clusters
belonging to the RNAs identified in Das et al. [2010] and add all the RNAs in these clusters
to the test set (100 samples). The remaining clusters are randomly added to the training and
validation splits.

2. Multi-state split. This split is used to tests gRNAde’s ability to design RNA with multiple
distinct conformational states. We order the structural clusters based on median intra-sequence
RMSD among available structures within the cluster2. The top 100 samples from clusters with
the highest median intra-sequence RMSD are added to the test set. The next 100 samples are
added to the validation set and all remaining samples are used for training.

Validation and test samples come from clusters with at most 5 unique sequences, in order to ensure
diversity. Any samples that were not assigned clusters are directly appended to the training set. We
also directly add very large RNAs (> 1000 nts) to the training set, as it is unlikely that we want to
design very large RNAs. We exclude very short RNA strands (< 10 nts).

Evaluation metrics. For a given data split, we evaluate models on the held-out test set by designing
16 sequences (sampled at temperature 0.1) for each test data point and computing averages for each
of the three metrics described in Section 2.4: native sequence recovery, secondary structure MCC
self-consistency score, and perplexity. We employ early stopping by reporting test set performance
for the model checkpoint for the epoch with the best validation set recovery. Standard deviations are
reported across 3 consistent random seeds for all models.

Hyperparameters. All models use 4 encoder and 4 decoder GVP-GNN layers, with 128 scalar/16
vector node features, 64 scalar/4 vector edge features, and drop out probability 0.5, resulting in
2,147,944 trainable parameters. All models are trained for a maximum of 50 epochs using the Adam
optimiser with an initial learning rate of 0.0001, which is reduced by a factor 0.9 when validation
performance plateaus with patience of 5 epochs. Ablation studies of key modelling decisions are
available in Appendix Table 2.

2For each RNA sequence, we compute the pairwise C4’ RMSD among all available structures. We then
compute the median RMSD across all sequences within each structural cluster.
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Figure 4: gRNAde compared to Rosetta for single-state design. (a) We benchmark native sequence
recovery of gRNAde, Rosetta, and FARNA on 14 RNA structures of interest identified by Das et al.
[2010]. gRNAde obtains higher native sequence recovery rates (56% on average) compared to Rosetta
(45%) and FARNA (32%). (b) Sequence recovery per sample for Rosetta and gRNAde, shaded
by gRNAde’s perplexity for each sample. gRNAde’s perplexity is correlated with native sequence
recovery for designed sequences. Full results available in Appendix Table 1.

4 Results

4.1 Single-state RNA design benchmark

We set out to compare gRNAde to Rosetta, a state-of-the-art physically based toolkit for biomolecular
modelling and design [Leman et al., 2020]. We reproduced the benchmark setup from Das et al.
[2010] for Rosetta’s fixed backbone RNA sequence design workflow on 14 RNA structures of
interest from the PDB, which mainly includes riboswitches, aptamers, and ribozymes (full listing in
Table 1). We trained gRNAde on the single-state split detailed in Section 3, explicitly excluding the
14 RNAs as well as any structurally similar RNAs in order to ensure that we fairly evaluate gRNAde’s
generalization abilities vs. Rosetta.

gRNAde improves sequence recovery over Rosetta. In Figure 4, we compare gRNAde’s native
sequence recovery for single-state design with numbers taken from Das et al. [2010] for Rosetta and
FARNA (a predecessor of Rosetta). gRNAde has higher recovery of 56% on average compared to
45% for Rosetta and 32% for FARNA. See Appendix Table 1 for full results.

gRNAde is significantly faster than Rosetta. In addition to superior sequence recovery, gRNAde is
significantly faster than Rosetta for high-throughout design pipelines. Training gRNAde from scratch
takes roughly 2–6 hours on a single A100 GPU, depending on the exact hyperparameters. Once
trained, gRNAde can design hundreds of sequences for backbones with hundreds of nucleotides in ∼1
second with GPU acceleration. On the other hand, Rosetta takes order of hours to produce a single
design due performing expensive Monte Carlo optimisations3. Deep learning methods like gRNAde
are arguably easier to use since no expert customization is required and setup is easier compared to
Rosetta [Dauparas et al., 2022], potentially making RNA design more broadly accessible.

gRNAde’s perplexity correlates with recovery. In Figure 4b, we plot native sequence recovery per
sample for Rosetta vs. gRNAde, shaded by gRNAde’s average perplexity for each sample. Perplexity
is an indicator of the model’s confidence in its own prediction (lower perplexity implies higher
confidence) and appears to be correlated with native sequence recovery. In Section 4.3, we further
demonstrate the utility of gRNAde’s perplexity for unsupervised learning of RNA fitness landscapes.

4.2 Multi-state RNA design benchmark

Structured RNAs often adopt multiple distinct conformational states to perform biological functions
[Ken et al., 2023]. For instance, riboswitches adopt at least two distinct functional conformation: a

3While we have not run Rosetta ourselves, we note that its documentation states that “runs on RNA backbones
longer than ten nucleotides take many minutes or hours”.
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Figure 5: Multi-state design benchmark. Multi-state gRNAde show marginal improvement over an
equivalent single-state model in terms of average native sequence recovery and secondary structure
self-consistency score. We plot performance for one consistent random seed across all models;
collated results are available in Appendix Table 2.

ligand bound (holo) and unbound (apo) state, which helps them regulate and control gene expression
[Stagno et al., 2017]. If we were to attempt single-state inverse design for such RNAs, each backbone
structure may lead to a different set of sampled sequences. It is not obvious how to select the
input backbone as well as designed sequence when using single-state models for multi-state design4.
gRNAde’s multi-state GNN, descibed in Section 2.3, directly ‘bakes in’ the multi-state nature of RNA
as an architectural inductive bias and designs sequences explicitly conditioned on multiple states.

In order to evaluate gRNAde’s multi-state design capabilities, we trained equivalent single-state and
multi-state gRNAde models on the multi-state split detailed in Section 3, where the validation and
test sets contain progressively more structurally flexible RNAs as measured by median RMSD among
multiple available states for an RNA.

Multi-state gRNAde boosts sequence recovery. In Figure 5, we compared a single-state variant
of gRNAde with otherwise equivalent multi-state models (with up to 3 and 5 states, respectively)
in terms of native sequence recovery and secondary structure self-consistency score5. Multi-state
variants show marginal improvements for both metrics. As a caveat, it is worth noting that multi-state
models consume more GPU memory than an equivalent single-state model during mini-batch training
(approximate peak GPU usage for max. number of states set to 1: 12GB, 3: 28GB, 5: 50GB on a
single A100 with otherwise equivalent hyperparameters).

Improved recovery in structurally flexible regions. In Figure 6, we evaluated gRNAde’s multi-state
sequence recovery at a fine-grained, per-nucleotide level. gRNAde with multi-state GNN architectures
improves sequence recovery over its single-state variant on structurally flexible nucleotides, as
characterised by undergoing changes in base pairing/secondary structure, higher average RMSD
between 3D coordinates across states, and larger solvent accessible surface area.

4.3 Zero-shot ranking of RNA fitness landscape

Lastly, we explored the use of gRNAde as an zero-shot ranker of mutants in RNA engineering
campaigns. Given the backbone structure of a wild type RNA of interest as well as a candidate set of
mutant sequences, we can compute gRNAde’s perplexity of whether a given sequence folds into the

4ProteinMPNN [Dauparas et al., 2022] proposes to average logits from multiple backbones for multi-state
protein design. Here is a simple example to highlight issues with such an approach: Consider two states A and B,
and choice of labels X, Y, and Z. For state A: X, Y, Z are assigned probabilities 75%, 20%, 5%. For state B: X, Y,
Z are assigned probabilities 5%, 20%, 75%. Logically, label Y is the only one that is compatible with both states.
However, averaging the probabilities would lead to label X or Z being more likely to be sampled in designs.

5Self-consistency scores for multi-state design are perhaps less reliable than single-state design due to the
lack of multi-state structure prediction tools. At present, we compute the average MCC score between the
multiple ground truth secondary structures and the predicted structure for designed sequences.
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Figure 6: Per-nucleotide sequence recovery for multi-state design. Multi-state gRNAde shows
improved sequence recovery over a single-state model for structurally flexible regions of RNAs, as
characterised by nucleotides that tend to undergo changes in base pairing (left), nucleotides with
greater average solvent accessible surface area (centre), and nucleotides with higher average RMSD
(right) across multiple states. Marginal histograms in blue show the distribution of values.

backbone structure. Perplexity is inversely related to the likelihood of a sequence conditioned on a
structure, as described in Section 2.4. We can then rank sequences based on how ‘compatible’ they
are with the backbone structure in order to select a subset to be experimentally validated in wet labs.

Retrospective analysis on ribozyme fitness landscape. A recent study by McRae et al. [2024]
determined a cryo-EM structure of an RNA polymerase ribozyme at 5Å resolution6, along with a
fitness landscape of ∼75,000 mutant sequences for the catalytic subunit 5TU. We design a retrospec-
tive study using this data of (sequence, fitness value) pairs where we simulate an RNA engineering
campaign with the aim of improving fitness over the wild type sequence.

We consider various design budgets ranging from hundreds to thousands of sequences selected for
experimental validation, and compare 4 unsupervised approaches for ranking/selecting variants: (1)
random choice from all ∼75,000 sequences; (2) random choice from all 449 single mutant sequences;
(3) random choice from all single and double mutant sequences (as sequences with higher mutation
order tend to be less fit); and (4) negative gRNAde perplexity (lower perplexity is better). For each
design budget and ranking approach, we compute the expected maximum change in fitness over the
wild type that could be achieved by screening as many variants as allowed in the given design budget.
We run 10,000 simulations to compute confidence intervals for the 3 random baselines.

gRNAde outperforms random baselines in low design budget scenarios. Figure 7 illustrates the
results of our retrospective study. At low design budgets of up to hundreds of sequences, which are
relevant in the case of a low throughput fitness screening assay, gRNAde outperforms all random
baselines in terms of the maximum change in fitness over the wild type. The top 10 mutants as ranked
by gRNAde contains a sequence with 4-fold improved fitness, while the top 200 leads to a 5-fold
improvement7. Beyond design budgets of thousands, random selection from double mutants starts
outperforming gRNAde.

Perspective. Overall, it is promising that gRNAde’s perplexity is somewhat correlated with
experimental fitness measurements out-of-the-box (zero-shot) and can be a useful ranker of mutant
fitness in our retrospective study. In realistic design scenarios, improvements could likely be obtained
by fine-tuning gRNAde on a low amount of experimental fitness data. For example, latent features
from gRNAde may be finetuned or used as input to a prediction head with supervised learning on
fitness landscape data. This study acts as a sanity check before committing to wet lab validation
of gRNAde designs. We see random mutagenesis and directed evolution-based approaches as
complementary to de-novo design and inverse folding approaches like gRNAde. Random mutagenesis
can be thought of as local exploration around a wild type sequence, optimising fitness within an
‘island’ of activity. Structure-based design approaches are akin to global jumps in sequence space,
with the potential to find new islands further away from the wild type [Huang et al., 2016].

6This RNA was not present in gRNAde’s training data, which contains structures at ≤4.0Å resolution.
7As a caveat, the fitness assays from McRae et al. [2024] used for creating the landscape have inherent noise

and cannot easily differentiate between mutants of similar activity.
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Figure 7: Retrospective study of gRNAde for ranking ribozyme mutant fitness. Using the
backbone structure and mutational fitness landscape data from an RNA polymerase ribozyme [McRae
et al., 2024], we retrospectively analyse how well we can rank variants at multiple design budgets
using random selection vs. gRNAde’s perplexity for mutant sequences conditioned on the backbone
structure. Note that gRNAde is used zero-shot here, i.e. it was not fine-tuned on any assay data.
For stochastic strategies, bars indicate median values, and error bars indicate the interquartile range
estimated from 10,000 simulations per strategy and design budget. At low throughput design budgets
of up to ∼500 sequences, selecting mutants using gRNAde outperforms random baselines in terms of
the expected maximum improvement in fitness over the wild type. In particular, gRNAde performs
better than single site saturation mutagenesis, even when all single mutants are explored (449 mutants
for the RNA polymerase ribozyme in McRae et al. [2024]).

5 Conclusion

We introduce gRNAde, a geometric deep learning pipeline for RNA sequence design conditioned
on one or more 3D backbone structures. gRNAde is superior to the physically based Rosetta for
3D RNA inverse folding in terms of performance, inference speed, and ease of use. Additionally,
gRNAde enables explicit multi-state design for structurally flexible RNAs which was previously not
possible with Rosetta. To the best of our knowledge, gRNAde is also the first geometric deep learning
architecture for multi-state biomolecule representation learning; the model is generic and can be
repurposed for other learning tasks on conformational ensembles, including multi-state protein design.
Key limitations of gRNAde and avenues for future development include the lack of support for
multiple interacting RNA chains, or accounting for biomolecular interactions of RNAs with proteins,
small molecules, and other ligands. More advanced user configurations, such as negative design
against undesired conformations or modulating conformational propensities are also not currently
possible. Finally, we are hopeful that advances in RNA structure determination and computationally
assisted cryo-EM [Kappel et al., 2020, Bonilla and Kieft, 2022] will further increase the amount of
RNA structures available for training geometric deep learning models in the future.
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A Related Work

We attempt to briefly summarise recent developments in RNA structure modelling and design, with
an emphasis on deep learning-based approaches.

RNA inverse folding. Most tools for RNA inverse folding focus on secondary structure without
considering 3D geometry [Churkin et al., 2018, Runge et al., 2019] and approach the problem from
the lens of energy optimisation [Ward et al., 2023]. Rosetta fixed backbone re-design [Das et al.,
2010] is the only energy optimisation-based approach that accounts for 3D structure. Deep neural
networks such as gRNAde can incorporate 3D structural constraints and are orders of magnitude
faster than optimisation-based approaches; this is particularly attractive for high-throughput design
pipelines as solving the inverse folding optimisation problem is NP hard [Bonnet et al., 2020].

RNA structure design. Inverse folding models for protein design have often been coupled with
backbone generation models which design structural backbones conditioned on various design
constraints [Watson et al., 2023, Ingraham et al., 2023, Didi et al., 2023]. Current approaches for
RNA backbone design use classical (non-learnt) algorithms for aligning 3D RNA motifs [Han et al.,
2017, Yesselman et al., 2019], which are small modular pieces of RNA that are believed to fold
independently. Such algorithms may be restricted by the use of hand-crafted heuristics and we plan
to explore data-driven generative models for RNA backbone design in future work.

RNA structure prediction. There have been several recent efforts to adapt protein folding
architectures such as AlphaFold2 [Jumper et al., 2021] and RosettaFold [Baek et al., 2021] for RNA
structure prediction [Li et al., 2023b, Wang et al., 2023, Baek et al., 2024]. A previous generation of
models used GNNs as ranking functions together with Rosetta energy optimisation [Watkins et al.,
2020, Townshend et al., 2021]. None of these architectures aim at capturing conformational flexibility
of RNAs, unlike gRNAde which represents RNAs as multi-state conformational ensembles. Neither
can structure prediction tools be used for RNA design tasks as they are not generative models.

RNA language models. Self-supervised language models have been developed for predictive and
generative tasks on RNA sequences, including general-purpose models such as RNA FM [Chen
et al., 2022] and RiNaLMo [Penic et al., 2024] as well as mRNA-specific CodonBERT [Li et al.,
2023a]. RNA sequence data repositories are orders of magnitude larger than those for RNA structure
(eg. RiNaLMo is trained on 36 million sequences). However, standard language models can only
implicitly capture RNA structure and dynamics through sequence co-occurence statistics, which
can pose a chellenge for designing structured RNAs such as riboswitches, aptamers, and ribozymes.
RibonanzaNet [He et al., 2024] represents a recent effort in developing structure-informed RNA
language models by supervised training on experimental readouts from chemical mapping, although
RibonanzaNet cannot be used for RNA design. Inverse folding methods like gRNAde are language
models conditioned on 3D structure, making them a natural choice for structure-based design.

B FAQs on using gRNAde

How to chose the number of states to provide as input to gRNAde? In general, this would depend
on the design objective. For instance, designing riboswitches may necessitate multi-state design,
while a single-state pipeline may be more sensible for locking an aptamer into its bound conformation
[Yesselman et al., 2019]. Note that it may be possible to benefit from multi-state gRNAde models
even when performing single-state design by using slightly noised variations of the same backbone
structure as an input conformational ensemble.

How to prioritise or chose amongst designed sequences? We have currently provided 3 evaluation
metrics: native sequence recovery, secondary structure self-consistency score and perplexity, towards
this end. We suspect that recovery may not be the ideal choice, except for design scenarios where we
require certain regions of the RNA to be conserved or native-like. Self-consistency score may be a
more holistic evaluation metric as it accounts for alternative base pairings leading to similar structures,
but may inherit the limitations of the secondary structure prediction method used as part of its
computation. In realistic design scenarios, we can pair gRNAde with another machine learning model
(an ‘oracle’) for ranking or predicting the suitability of designed sequences for the objective (for
instance, binding affinity or some other notion of fitness). We hope to conduct further experimental
validation of gRNAde designs in the wet lab in order to better understand these tradeoffs.
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C Additional Figures and Tables

Figure 8: In-silico evaluation metrics for gRNAde.

Table 1: Full results for Figure 4 comparing gRNAde to Rosetta and FARNA for single-state design.

Figure 9: RNASolo data statistics.

Table 2: Aggregated benchmark results for gRNAde.

Figure 10: Multi-graph tensor representation of RNA conformational ensembles.

Listing 1: Pseudocode for multi-state GNN encoder layer.
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Figure 8: In-silico evaluation metrics for gRNAde designed sequences. We consider (1) the
percentage of native nucleotides recovered in designed samples, (2) self-consistency of ‘forward
folded’ secondary structures of designs with the native secondary structure, as well as (3) perplexity
of the model’s prediction (not shown in the figure).

Table 1: Full results for Figure 4 comparing gRNAde to Rosetta and FARNA for single-state design
on 14 RNA structures of interest identified by Das et al. [2010]. Rosetta and FARNA recovery values
are taken from Das et al. [2010], Supplementary Table 2.

FARNA Rosetta gRNAde (single-state)
PDB ID Description Recovery Recovery Recovery Perplexity Self-cons.

1CSL RRE high affinity site 0.20 0.44 0.5719 1.2812 0.8644
1ET4 Vitamin B12 binding RNA aptamer 0.34 0.44 0.6250 1.3457 -0.0135
1F27 Biotin-binding RNA pseudoknot 0.36 0.37 0.3437 1.6203 0.4523
1L2X Viral RNA pseudoknot 0.45 0.48 0.4721 1.3181 0.5692
1LNT RNA internal loop of SRP 0.27 0.53 0.5843 1.4337 0.1379
1Q9A Sarcin/ricin domain from E.coli 23S rRNA 0.40 0.41 0.5044 1.3411 0.0597
4FE5 Guanine riboswitch aptamer 0.28 0.36 0.5300 1.3824 0.9116
1X9C All-RNA hairpin ribozyme 0.31 0.50 0.5000 1.3905 0.6630
1XPE HIV-1 B RNA dimerization initiation site 0.24 0.40 0.7037 1.2177 0.7768
2GCS Pre-cleavage state of glmS ribozyme 0.26 0.44 0.5078 1.3053 0.4062
2GDI Thiamine pyrophosphate-specific riboswitch 0.38 0.48 0.6500 1.2363 -0.0251
2OEU Junctionless hairpin ribozyme 0.30 0.37 0.9519 1.0913 0.7768
2R8S Synthetic FAB bound to ribozyme domain 0.36 0.53 0.5689 1.1881 0.7281
354D Loop E from E. coli 5S rRNA 0.35 0.55 0.4410 1.4938 0.0430

Overall recovery: 0.32 0.45 0.5682
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(d) Bivariate distribution for sequence length vs.
avg. RMSD. The joint plot illustrates how structural
diversity (measured by avg. pairwise RMSD) varies
across sequence lengths. We notice similar structural
variations regardless of sequence length.

Figure 9: RNASolo data statistics. We plot histograms to visualise the diversity of RNAs available in
terms of (a) sequence length, (b) number of structures available per sequence, as well as (c) structural
variation among conformations for those RNA that have multiple structures. The bivariate distribution
plot (d) for sequence length vs. average pairwise RMSD illustrates structural diversity regardless of
sequence lengths.
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Table 2: Aggregated benchmark results for gRNAde. Split: Single- and multi-state splits are described
in Section 3; models trained on ‘All data’ use all RNASolo samples for training and are evaluated on
the multi-state test set, solely for the purpose of releasing the best possible gRNAde checkpoints for
real-world usage. Model: ‘AR’ implies autoregressive decoding (described in Section 2.3), while
‘NAR’ implies non-autoregressive, one-shot decoding using an MLP. AR models have significantly
higher self-consistency scores than NAR, as autoregressive decoding can condition predictions at
each iteration on past predictions while one-shot decoding cannot. Max. #states: Multi-state models
marginally improve native sequence recovery over an equivalent single state variant, even for the
single-state benchmark. Max. train RNA length: Limiting the maximum length of RNAs used for
training often leads to lower sequence recovery and higher self-consistency scores. Results in the
main paper are reported for models shaded in gray which are all trained on maximum length of
5000 nucleotides.

Max. Max. train Native seq. Sec. struct. MCC
Split Model #states RNA length recovery self-consistency

Si
ng

le
-s

ta
te

sp
lit AR 1 500 0.4364±0.0059 0.6206±0.0662

AR 1 1000 0.4534±0.0063 0.6481±0.0037
AR 1 2500 0.4945±0.0077 0.6278±0.0215
AR 1 5000 0.5271±0.0019 0.5706±0.0119

AR 3 5000 0.5386±0.0134 0.6255±0.0057
AR 5 5000 0.5400±0.0270 0.6006±0.0345

M
ul

ti-
st

at
e

sp
lit

AR 1 500 0.4452±0.0067 0.6031±0.0288
AR 1 1000 0.4472±0.0132 0.5799±0.0156
AR 1 2000 0.4799±0.0180 0.5668±0.0120
AR 1 5000 0.4549±0.0082 0.5689±0.0185

AR 3 5000 0.4666±0.0288 0.5605±0.0305
AR 5 5000 0.4722±0.0106 0.5488±0.0323

NAR 1 5000 0.4324±0.0097 0.4229±0.0050
NAR 3 5000 0.4327±0.0212 0.4185±0.0249
NAR 5 5000 0.4450±0.0116 0.4130±0.0177

A
ll

da
ta AR 1 5000 0.7361±0.0039 0.6301±0.0160

AR 2 5000 0.7845±0.0099 0.6215±0.0218
AR 3 5000 0.7886±0.0106 0.6052±0.0128
AR 5 5000 0.8110±0.0077 0.6135±0.0280
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Figure 10: Multi-graph tensor representation of RNA conformational ensembles, and the asso-
ciated symmetry groups acting on each axis. We process a set of k RNA backbone conformations
with n nodes each into a tensor representation. Each multi-state GNN layer updates the tensor while
being equivariant to the underlying symmetries; pseudocode is available in Listing 1. Here, we show
a tensor of 3D vector-type features with shape n× k × 3. As depicted in the equivariance diagram,
the updated tensor must be equivariant to permutation Sn of n nodes for axis 1, permutation Sk of k
conformers for axis 2, and rotation SO(3)/O(3) of the 3D features for axis 3.
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1 class MultiGVPConv(MessagePassing):
2 ’’’GVPConv for handling multiple conformations ’’’
3

4 def __init__(self , ...):
5 ...
6

7 def forward(self , x_s , x_v , edge_index , edge_attr):
8

9 # stack scalar feats along axis 1:
10 # [n_nodes , n_conf , d_s] -> [n_nodes , n_conf * d_s]
11 x_s = x_s.view(x_s.shape [0], x_s.shape [1] * x_s.shape [2])
12

13 # stack vector feat along axis 1:
14 # [n_nodes , n_conf , d_v , 3] -> [n_nodes , n_conf * d_v *3]
15 x_v = x_v.view(x_v.shape [0], x_v.shape [1] * x_v.shape [2]*3)
16

17 # message passing and aggregation
18 message = self.propagate(
19 edge_index , s=x_s , v=x_v , edge_attr=edge_attr)
20

21 # split scalar and vector channels
22 return _split_multi(message , d_s , d_v , n_conf)
23

24 def message(self , s_i , v_i , s_j , v_j , edge_attr):
25

26 # unstack scalar feats:
27 # [n_nodes , n_conf * d] -> [n_nodes , n_conf , d_s]
28 s_i = s_i.view(s_i.shape [0], s_i.shape [1]//d_s , d_s)
29 s_j = s_j.view(s_j.shape [0], s_j.shape [1]//d_s , d_s)
30

31 # unstack vector feats:
32 # [n_nodes , n_conf * d_v *3] -> [n_nodes , n_conf , d_v , 3]
33 v_i = v_i.view(v_i.shape [0], v_i.shape [1]//( d_v*3), d_v , 3)
34 v_j = v_j.view(v_j.shape [0], v_j.shape [1]//( d_v*3), d_v , 3)
35

36 # message function for edge j-i
37 message = tuple_cat ((s_j , v_j), edge_attr , (s_i , v_i))
38 message = self.message_func(message) # GVP
39

40 # merge scalar and vector channels along axis 1
41 return _merge_multi (* message)
42

43 def _split_multi(x, d_s , d_v , n_conf):
44 ’’’
45 Splits a merged representation of (s, v) back into a tuple.
46 ’’’
47 s = x[..., :-3 * d_v * n_conf ].view(x.shape [0], n_conf , d_s)
48 v = x[..., -3 * d_v * n_conf :]. view(x.shape [0], n_conf , d_v , 3)
49 return s, v
50

51 def _merge_multi(s, v):
52 ’’’
53 Merges a tuple (s, v) into a single ‘torch.Tensor ‘,
54 where the vector channels are flattened and
55 appended to the scalar channels.
56 ’’’
57 # s: [n_nodes , n_conf , d] -> [n_nodes , n_conf * d_s]
58 s = s.view(s.shape[0], s.shape [1] * s.shape [2])
59 # v: [n_nodes , n_conf , d, 3] -> [n_nodes , n_conf * d_v *3]
60 v = v.view(v.shape[0], v.shape [1] * v.shape [2]*3)
61 return torch.cat([s, v], -1)

Listing 1: PyG-style pseudocode for a multi-state GVP-GNN layer. We update node features for
each conformer independently while maintaining permutation equivariance of the updated feature
tensors along both the first (no. of nodes) and second (no. of conformations) axes.

19


	Introduction
	The gRNAde pipeline
	The 3D RNA inverse folding problem
	RNA conformational ensembles as geometric multi-graphs
	Multi-state GNN for representation learning on conformational ensembles
	Evaluation metrics for designed sequences

	Experimental Setup
	Results
	Single-state RNA design benchmark
	Multi-state RNA design benchmark
	Zero-shot ranking of RNA fitness landscape

	Conclusion
	Related Work
	FAQs on using gRNAde
	Additional Figures and Tables

