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Geometric deep learning for
3D RNA Inverse design

Chaitanya K. Joshi, Arian R. Jamasb, Ramon Vinas, Charles Harris, Simon Mathis, Pietro Lio

Computational Biology Workshop, International Conference on Machine Learning, 2023
Forthcoming book chapter in Methods in Molecular Biology (RNA Design: Methods and Protocols)

* Preprint (not up to date): https://arxiv.org/abs/2305.14749

™ Codebase: github.com/chaitjo/geometric-rna-design


https://arxiv.org/abs/2305.14749
https://github.com/chaitjo/geometric-rna-design

Executive summary

Fixed backbone(s) inverse design of RNA sequence

Fixed backbone
re-design

Multi-state
raph Neural
Extract Graph Neura Sequence ey
Backbones Network Decoder
S Encoder RNA
Sequence
Equivariant to: 1.0
RNA Conformational Set of Backbone * 3D roto-translations

e node order

Ensemble e conformation order

Geometric Graphs

ProteinMPNN-analogue for RNA. Open-source and ready to use
on GitHub. gRNAde 101 tutorial: github.com/chaitjo/geometric-

rna-design/blob/main/tutorial /tutorial.ipynb

Native sequence recovery
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https://github.com/chaitjo/geometric-rna-design/blob/main/tutorial/tutorial.ipynb
https://github.com/chaitjo/geometric-rna-design/blob/main/tutorial/tutorial.ipynb
https://github.com/chaitjo/geometric-rna-design/blob/main/tutorial/tutorial.ipynb

RNA at the forefront of biotechnology
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And many RNA are structured

RNA polymerase SARS-CoV-2 Adenine
ribozyme frameshift riboswitch
8T12P element aptamer
McRae et al. 6XRZ S5ES54
Zhang et al. Stagno et al.

NGBS2022 Talk 10: RNA modelling
and design - Rhiju Das

466 views * 4 months ago



Meanwhile

3D deep learning for protein design is starting to work

What about
RNA?

Dauparas et al. Robust deep learning—based protein sequence design using ProteinMPNN. Science. 2022.
Watson, Juergens et al. De novo design of protein structure and function with RFdiffusion. Nature. 2023.



‘Generative Al
IS starting to work for protein design



Structure-based protein design workflow

Assumption: Structure — Function

Input structure Extract Backbone Verification

designed

ProteinMPNN AlphaFold2

N NMYSYKKIGNKYI
v VSINNHTEIVKALN

Predicted sequence

designed

fixed
From experiment (e.g X-Ray Use AlphaFold2 to predict the
Crystallography) or from design (e.g Extract backbone and define chains to From backbone predict diverse structure of the sequence and
Rosetia) design sequences using ProteinMPNN that superimpose with original structure.

fold into the same struciure

Not shown: protein Language Models (purely sequence-based)

Dauparas et al. Robust deep learning—based protein sequence design using ProteinMPNN. Science. 2022.
Figure: Simon Duerr



Analogy to ChatGPT
Natural language models

S = Where are we going

| T | T

Previous words wWord being
(Context) predicted

P(X)

ACDEFGHIKLMNPORSTVWY

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

Sequence generation: Language model

Sequence generation conditioned on structure: ProteinMPNN (inverse folding)

Ingraham et al. Generative Models for Graph-Based Protein Design. NeurlPS, 2019.



De-novo protein design workflow

Starting from scratch

Backbone design Inverse folding Verification
designed
RFDiffusion ProteinMPNN
Q- Q-
5T r> \/O N, NMYSYKKIGNKYI
v . v VSINNHTEIVKALN
Predicted sequence

Target/
design constraint

Watson, Juergens et al. De novo design of protein structure and function with RFdiffusion. Nature. 2023.



Analogy to DALL-E

ALL-E .
[?—- Image generation models

Forward diffusion process
slowly maps data to noise

qQ(xe| X 1) q(Xepqlxe)

< y , ~—~

pa(xr—1]x¢) Po(XclXr+1)

Diffusion models learn to
map noise back to data

Backbone design: RFdiffusion



What about RNA?



RNA structure modelling and design

Emphasis on secondary structure

Structure prediction

3'-end
RNA RNA RNA
sequence secondary structure tertiary structure

Inverse design



Relatively fewer tools for 3D design

Potential application: aptamers, riboswitches, ribozymes

Binding of Aptamer to its Target
Through Conformational Recognition

Biomarker

3D structure
formation

Aptamer sequence Functional aptamer Target binding

Figure: biorender



RNAMake

Uses classical algorithms for alignment between RNA motifs
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Yesselman et al. Computational Design of Three-dimensional RNA Structure and Function. Nature Nanotechnology, 2020.



Deep learning toolkit for RNA design

...work In progress

designed

RFDiffusion

AlphaFold2

NMYSYKKIGNKYI O "it, ' Q:O N
O Predicted sequence O

Nothing public using DL @ gRNAde RF-NA, RhoFold, etc.
RNAMake (non-DL) This talk! Several teams working on this.

Not shown: RNA Language Models — Several teams working on this.



Towards deep learning:
What data exists?



Geometric Deep Learning for RNA

Main challenge: paucity of 3D structural data

“trained with only 18 known RNA structures”

Geometric deep learning of RNA structure. Science, 2021.

Raphael JL Townshend, Stephan Eismann, Andrew M Watkins, Ramya Rangan, Maria
Karelina, Rhiju Das, and Ron O Dror.

“trained on 2,986 RNA chains, non-redundant to 122 test RNASs”

Integrating end-to-end learning with deep geometrical potentials for ab initio RNA
structure prediction. Nature Communications, 2023.

Yang Li, Chengxin Zhang, Chenjie Feng, Robin Pearce, Peter L. Freddolino, Yang Zhang.




All RNA structures In the PDB

RNAsolo: cleaned, PDB-derived RNA 3D structures

Solo RNAs
X-ray 1454
NMR 573
Electron microscopy 73
Multi-method 1
Total 2101
Total (today) 2387

RNAs from protein-RNA complexes
6439
146

4104

10694

13218

RNAs from DNA-RNA hybrids All RNAs

91

28

119

136

7984
147

4177

12914

15741 (13870 <3.5A)

R/\[\PDUS Adamczyk et al. RNAsolo: a repository of clean, experimentally determined RNA 3D structures. Bioinformatics. 2022.



All RNA structures In the PDB

RNAsolo: cleaned, PDB-derived RNA 3D structures

Solo RNAs RNAs from protein-RNA complexes RNAs from DNA-RNA hybrids All RNAs

Total (today) 2387 13218 136 15741

3825 equivalence classes

VS.

ProteinMPNN, RFdiffusion: entire PDB
208,659 proteins <3.5A — 25,361 clusters at 30% seq.id.

One order of magnitude more proteins!



Should we just wait?

Not necessarily...

Other successful (in-silico) tools were trained on carefully chosen subsets:
 Chroma: 28819 structures <2.6A

e (Genie: 8766 domains

 FrameFlow: 3938 domains

“...achieve similar in-silico performance to RFdiffusion with a quarter of the parameters —
an important consideration...models are often run tens of thousands of times...”

— Winnifrith et al. 2023.

Winnifrith, Outeiral, Hie. Generative artificial intelligence for de novo protein design. 2023.



the PDB

ty from protein-RNA complexes, tRNAs, ribosomal RNAs
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Distribution of sequence lengths

Mostly shorter than 500 nucleotides

Histogram of sequence lengths
Distribution: 684.9 =+ 1072.8, Max: 4455, Min: 11

300+

200 -

0 1000 2000 3000 4000



RNA adopt multiple conformations

Critical for functionality & perhaps interesting for design

Histogram of no. of structures per unique sequence
Distribution: 2.84 = 9.39, Max: 267, Min: 1

Sequences with >1 structure
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RNA adopt multiple conformations

Same sequence can have very different structures

Histogram of avg. pairwise RMSD per sequence
Distribution: 1.33A = 1.89, Max: 18.35A, Min: 0.00A
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The gRNAde pipeline
for RNA Inverse folding



FFixed backbone re-design
Input: PDB file(s) @ geometric graph in 3D

3x distances
Rihose o @ 3x angles
3-bead > 3x torsions

sugar

representation
(P, C4', N1/N9)

| (O Node (neucleotide)
N\ &5) Backbone chain

RNA backbone atoms Coarse-grained features 3D neighbourhood



Why the 3-bead representation?
P, C4', N1 (pyrimidine) or N9 (purine)

“The pseudotorsional descriptors n
and 6, together with sugar pucker,
are sufficient to describe the RNA
backbone conformation fully
In most cases.”

Coarse-grained modeling of RNA 3D structure. Dawson et al. Methods. 2016.



gRNAde model architecture

One or more featurized graphs — per-node probability over 4 bases

Backbone 1 GNN Iayer > Autoregressive: 5’ to 3
X L
Deep
Set Decoder
AGCU

Per-node
Backbone n GNN layer >-> probability

X L

Can be sampled from to
design new seqguences

Jing et al. Learning from Protein Structure with Geometric Vector Perceptrons. ICLR 2020.
Zaheer et al. Deep sets. NeurlPS 2017.



Graph Neural Networks for 3D structure

Learn to propagate information along the graph Account for 3D symmetries

Target node Neural Network
Q Potential energy value

¥
@ o
9 9 @‘" e """""" 9‘ 3 “““““““ Q
& o,
° ’v ------- o Per-atom 3D rotation

9 forces & translation
4

(a) Input graph (b) Neighborhood aggregation



Where to start with GNNs for biomolecules?

A Hitchhiker’s Guide to Geometric GNNs
for 3D Atomic Systems

Alexandre Duval*!? Simon V. Mathis*> Chaitanya K. Joshi*®> Victor Schmidt* !

Santiago Miret° Fragkiskos D. Malliaros® Taco Cohen®

1,4

Pietro Lio® Yoshua Bengio Michael Bronstein’

Mila 2Université Paris-Saclay °University of Cambridge “Université de Montréal
°Intel Labs %Qualcomm AI Research “University of Oxford
*Equal first authors.
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What is a good designs?

In-silico evaluation metrics to prioritise designs Not shown:
Perplexity
model’s guess of
P(seq|struct)
GAGCGU. .. o-0
-0
Backbone _ gRNAde = Sampled LCCImR
graph(s) sequences UACAé:g
-0
p .
True .1 EternaFold Predicted
Se uence ( ................................ ) : > Secondary
X Sequence S16 structures
recovery
True §81
Secondary D >
structure Secondary structure $816

self-consistency score



What can we do with gRNAde?



FFixed backbone re-design

Input: native PDB file = Output: desighed sequences

Multi-state
Graph Neural

Extract

Sequence
Decoder

Backbones NetWOrk GAGCGU. ..
— Encoder RNA
Sequence
RNA Conformational Set of Backbone

Ensemble Geometric Graphs



Benchmarking single-state design

Re-design 14 RNAs of interest from the PDB by Das et al.

Improved sequence recovery

1.0

O
o0

Native sequence recovery
O
N

o
N

0.0

.
(@)
I

1 32%

FARNA

Rosetta

gRNAde

Faster inference speed

* gRNAde: under 1 second for 100s of nts.
* Rosetta: order of hours...

Rosetta documentation:
“runs on RNA backbones longer than ~ten
nucleotides take many minutes or hours”™

Tried to evaluate for generalisation:
Excluded all 14 RNAs and structurally

identical RNAs (TM-score threshold 0.45)
from training data.

Das, Karanicolas, Baker. Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 2010.



Perplexity correlates well with recovery

Indicator of model’s confidence in its own prediction

1.0
G“a”g‘st;'ra‘;fw'mh . Synthetic FAB bound to
- 1.7 ribozyme domain
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Rosetta seq. recovery

Could perplexity be correlated with
fitness/function, too?



Can gRNAde understand RNA fithess landscapes?
A retrospective analysis on an RNA Polymerase
Ribozyme (McRae et al., PNAS 2024)



Structure + Functional landscape

Allows retrospectively analysis of gRNAde for RNA engineering

“
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P rutarts ot o soin * Cryo-EM structure at 5A resolution
1 g Auc = 0 - aSu . y s
8 (not in gRNAde’s training set).

: z:::::?*:::‘z:ﬁ':f;?::f e o 70,000+ data points of (mutant

”“"‘ :ii:*‘“‘“”‘“‘jj‘;‘;‘;“;;:“;ﬁ‘g;?u o, sequence, fithess).
f{ 7|° ucccccuccco—u.c’loxxcee~|
°‘”‘;‘I::i2‘::23"%2:;2:36;02222. 7 " ope  gRNAde's perplexity: likelihood of

seguence folding into given backbone;
can be used as an unsupervised
ranker of mutants for a given structure.

» | atent features can be used for
finetuning (supervised learning), too.

KL

McRae et al. Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. PNAS, 2024.



Unsupervised learning of Ribozyme fithess

Max Fitness by Sample Size and Condition (n=74,943; simulations=10,000)

Expected 'max' fold change over WT
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ML-augmented RNA engineering

Evolution: local exploration, gRNAde: global jJumps in sequence space
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Multi-state RNA design



Explicitly designing conformational ensembles
Single-state design can be ambiguous
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Stagno et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 2017.
Hoetzel, Suess. Structural changes in aptamers are essential for synthetic riboswitch engineering. Journal of Molecular Biology, 2022.
Ken et al. RNA conformational propensities determine cellular activity. Nature, 2023.



Benchmarking multi-state design

Creating a challenging set of structurally flexible RNAs

1. Cluster RNAsolo based on structural similarity — US-align with TM-score
threshold 0.45.

2. Order clusters based on median intra-sequence RMSD among available structures
in the cluster.

3. Training, validation, and test splits become progressively more flexible.
 Top 100 samples from clusters with highest intra-seq. RMSD — test set.
 Next 100 samples from clusters with highest intra-seq. RMSD — validation set.
* \ery large (> 1000 nts) RNAs — training set.

4. If any samples were not assigned clusters, append them to the training set.

Test/validation set: 100 RNAs each, training set: ~4000 RNAs.



Split: train Split: val Split: test

Average median RMSD: 0.38 +- 0.99 Average median RMSD: 1.89 +- 3.42 Average median RMSD: 3.72 +- 4.74
Median number of structures: 1.00 Median number of structures: 2.00 Median number of structures: 2.00
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Multi-state models slightly improve recovery

Room for improvement in designing models and evaluation

Native sequence recovery Self-consistency
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Surface vs. core nucleotides

Multi-state models show improved recovery on surface

gRNAde model

- ] state
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Paired vs. unpaired nucleotides

Multi-state models recover paired positions better

gRNAde model
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Highly variably located nucleotides

Multi-state models show improved recovery In variable regions

08 gRNAde model
- ] state
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Nucleotides In longer sequences

Advantages of multi-state models for medium length sequences

gRNAde model
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Native sequence recovery
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Limitations & Future Work



Things we are thinking about

Application
 How to chose the number of states? (What'’s the design scenario?)

 How to prioritise amongst designed sequences?
* Wet lab validation?

Methods

* Support for multiple interacting RNA chains, or accounting for interactions with ligands.
e Support partial re-design, negative design against undesired conformations.
* Improved architectures and benchmarking of multi-state design.

Resources

* Open-source code and checkpoints: github.com/chaitjo/geometric-rna-design

* Tutorial available + forthcoming book chapter in Methods in Molecular Biology.



https://github.com/chaitjo/geometric-rna-design

Thank you for listening! Questions?

Email: chaitanya.joshi©cl.cam.ac.uk, Website: chaitjo.com

Thank you to:

Pietro Lio, Arian Jamasb, Ramon Vinas, Charles Harris, Simon Mathis,
and my labmates at Cambridge

Roger Foo (NUS, Singapore)

Phil Holliger (MRC LMB)

Alex Borodavka (Cambridge Biochemistry)
Janusz Bujnicki (IIMCB, Warsaw)


mailto:chaitanya.joshi@cl.cam.ac.uk
https://chaitjo.com

