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Executive summary

Inverse design of RNA sequence conditioned on backbone structure
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RNA at the forefront of biotechnology
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And many RNA are structured

RNA polymerase SARS-CoV-2 Adenine
ribozyme frameshift riboswitch
8T12P element aptamer
McRae et al. 6XRZ S5ES54
Zhang et al. Stagno et al.

NGBS2022 Talk 10: RNA modelling
and design - Rhiju Das

466 views * 4 months ago



Meanwhile

Generative models can design bespoke protein structure & function!

4 Prescient
Design

A Genentech Accelerator

What about
RNA?

»
Jumper et al. Highly accurate protein structure prediction wi’t.h AlphaFold. Nature, 2021.
Dauparas et al. Robust deep learning—based protein sequence design using ProteinMPNN. Science, 2022.
Watson, Juergens et al. De novo design of protein structure and function with RFdiffusion. Nature, 2023.



‘Generative Al
IS starting to work for protein design



Structure-based protein design workflow

Assumption: Structure — Function

Input structure Extract Backbone Verification

designed

ProteinMPNN AlphaFold2

N NMYSYKKIGNKYI
v VSINNHTEIVKALN

Predicted sequence

designed

fixed
From experiment (e.g X-Ray Use AlphaFold2 to predict the
Crystallography) or from design (e.g Extract backbone and define chains to From backbone predict diverse structure of the sequence and
Rosetia) design sequences using ProteinMPNN that superimpose with original structure.

fold into the same struciure

Not shown: protein Language Models (purely sequence-based)

Dauparas et al. Robust deep learning—based protein sequence design using ProteinMPNN. Science. 2022.
Figure: Simon Duerr



Analogy to ChatGPT

Trained on PDB structures:
Natural language models |
Samples are biased towards

thermal stability, expression.
S = Where are we going
| T | T

Previous words wWord being
(Context) predicted

P(X)

ACDEFGHIKLMNPORSTVWY

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

Sequence generation: Language model

Sequence generation conditioned on structure: ProteinMPNN (inverse folding)

Ingraham et al. Generative Models for Graph-Based Protein Design. NeurlPS, 2019.



De-novo protein design workflow

Starting from scratch

Backbone design Inverse folding Verification
designed
RFDiffusion ProteinMPNN
Q- Q-
5T r> \/O N, NMYSYKKIGNKYI
v . v VSINNHTEIVKALN
Predicted sequence

Target/
design constraint

Watson, Juergens et al. De novo design of protein structure and function with RFdiffusion. Nature. 2023.



Analogy to DALL-E

DALL-E . structures:
smmm 'Mage generation models |
Learn to mix and

Forward diffusion process . match sub-structures.
slowly maps data to noise

qQ(xe| X 1) q(Xepqlxe)

<~ - ~—

pa(xr—1]x¢) Po(XclXr+1)

Diffusion models learn to
map noise back to data

Backbone design: RFdiffusion



What about RNA?



RNA structure modelling and design

Emphasis on secondary structure

Structure prediction

2

‘ t ;’j

3'-end
RNA RNA RNA
sequence Secondary structure tertiary structure

Inverse design

Thoughts on how to think (and talk) about RNA structure Quentin Vicens and Jeffrey S. Kieft. PNAS. 2022.



Relatively fewer tools for 3D design

Potential application: aptamers, riboswitches, ribozymes

Transient gene expression RNA world
Designing riboswitches in mRNAs Self-replicating ribozymes

O O

ON OFF
Gene Switch

Aptamers

Fun::tional RNA

RNAs: carriers of information + play functional roles

Synthetic RNA-based switches for mammalian gene expression control. Auslander and Fussenegger. Curr. Opin. Biotechnology. 2017.
McRae et al. Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. PNAS, 2024.



RNAMake

Uses classical algorithms for alignment between RNA motifs
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Yesselman et al. Computational Design of Three-dimensional RNA Structure and Function. Nature Nanotechnology, 2020.



Deep learning toolkit for RNA design

...work In progress

designed

RFDiffusion ProteinMPNN AlphaFold2

Q( }?/\\Q\V\O ; ' Y Q;/fo;: NMYSYKKIGNKYI C}“\/ O
A S AN L = e —> e
B { Predicted sequence
fixed
Nothing public yet gRNAde DRFold, RhoFold, RF-NA
RNAMake, RNA origami (non-DL) This talk! Several teams working on this.

Not shown: RNA Language Models — Several teams working on this.
eg. RiNaLMo




Towards deep learning:
What data exists?



Geometric Deep Learning for RNA

Main challenge: paucity of 3D structural data

“trained with only 18 known RNA structures”

ARES: Geometric deep learning of RNA structure. Science, 2021.

Raphael JL Townshend, Stephan Eismann, Andrew M Watkins, Ramya Rangan, Maria
Karelina, Rhiju Das, and Ron O Dror.

“trained on 2,986 RNA chains, non-redundant to 122 test RNASs”

DRFold: Integrating end-to-end learning with deep geometrical potentials for ab initio
RNA structure prediction. Nature Communications, 2023.

Yang Li, Chengxin Zhang, Chenjie Feng, Robin Pearce, Peter L. Freddolino, Yang Zhang.




All RNA structures In the PDB

RNAsolo: cleaned, PDB-derived RNA 3D structures

Solo RNAs RNAs from protein-RNA complexes RNAs from DNA-RNA hybrids All RNAs

Total (today) 2387 13218 136 15741

3825 equivalence classes

VS.

ProteinMPNN, RFdiffusion: entire PDB
208,659 proteins <3.5A — 25,361 clusters at 30% seq.id.

One order of magnitude more proteins!



Should we just wait?

Not necessarily...

Other successful (in-silico) tools were trained on carefully chosen subsets:
 Chroma: 28819 structures <2.6A

e (Genie: 8766 domains

 FrameFlow: 3938 domains

“...achieve similar in-silico performance to RFdiffusion with a quarter of the parameters —
an important consideration...models are often run tens of thousands of times...”

— Winnifrith et al. 2023.

Winnifrith, Outeiral, Hie. Generative artificial intelligence for de novo protein design. 2023.



Distribution of sequence lengths

Mostly shorter than 500 nucleotides

Histogram of sequence lengths
Distribution: 684.9 = 1072.8, Max: 4455, Min: 11
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Many RNAs have multiple structures
Multiple conformations are important for functionality

Histogram of no. of structures per unique sequence
Distribution: 2.84 = 9.39, Max: 267, Min: 1

Sequences with >1 structure
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High RMSDs between multiple states

Same sequence can have very different structures

Histogram of avg. pairwise RMSD per sequence
Distribution: 1.33A + 1.89, Max: 18.35A, Min: 0.00A
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RFam families in the PDB

Majority from protein-RNA complexes, tRNAs, ribosomal RNAs
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The gRNAde pipeline
for RNA Inverse folding



FFixed backbone re-design

Input: native PDB file = Output: desighed sequences

~Quasispecies

Multi-state
Graph Neural
Network
Encoder

Extract

Backbones GAGCGU. ..

RNA

Sequence
Decoder
Sequence
RNA Conformational Set of Backbone
Ensemble Geometric Graphs

Self-supervised learning:
(backbone, sequence) pairs from PDB



RNA backbones as 3D graphs

Preparing input: PDB file(s) @ geometric graph in 3D

N1/N9
- - @ 3x distances

Ribose —_— gx fng!es
sugar 3-bead X torsions

representation

(P, C4', N1/N9)

N
~ (O Node (neucleotide)
P

AN &5) Backbone chain

RNA backbone atoms Coarse-grained features 3D neighbourhood



Why the 3-bead representation?
P, C4', N1 (pyrimidine) or N9 (purine)

!

Intuition: Reduce the degrees of freedom
as input to gRNAde.

“The pseudotorsional descriptors n and

0, together with sugar pucker, are
sufficient to describe RNA backbone

conformations fully in most cases.”

Coarse-grained modeling of RNA 3D structure. Dawson et al. Methods. 2016.



gRNAde model architecture

One or more featurized graphs — per-node probability over 4 bases

Deep Set
Backbone 1 . Per-node
Pooling ogits
Autoregressive
decoder
— AGCU
Backbone k AGCG
Partial Sampling

sequence

Jing et al. Learning from Protein Structure with Geometric Vector Perceptrons. ICLR 2020.
Zaheer et al. Deep sets. NeurlPS 2017.



What is a good designs?

In-silico evaluation metrics to prioritise designs

BRECGU. . . °-o
S
Backbone gRNAde Sampled Up a2y
graph sequences -0
S1 2D: EternaFold
True , . SD:Rhofold | Predicted
sequence ' structures
Sequence recovery °16
T o1
Strur;[ejre O > .
Structural self-consistency scores S16

2D: MCC, 3D: RMSD, TM, GDT



Graph Neural Networks for 3D structure

Learn to propagate information along the graph Account for 3D symmetries
Target node Neural Network
Q 5 Potential energy value
L o o"
12 ® O+ 3: """""" 120 3 """"""" @
@ o,
6 ’v ------- 10 Per-atom 3D rotation
9 forces & translation
(4

(a) Input graph (b) Neighborhood aggregation



M u here to A Hitchhiker’s Guide to Geometric GNNS
sta rt? for 3D Atomic Systems
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What can we do with gRNAde?



Native sequence recovery

Benchmarking single-state design
Re-design 14 RNAs of interest from the PDB by Das et al.

Improved sequence recovery Faster inference speed
1.00
* gRNAde: under 1 second for 100s of nts.
 Rosetta: order of hours...
0.75
Rosetta documentation:
0.50 “runs on RNA backbones longer than ~ten
nucleotides take many minutes or hours”
0.25
Tried to evaluate for generalisation:
0.00 Training data excluded all 14 RNAs and
ViennaRNA FARNA Rosetta gRNAde structurally identical RNAs (TM-score >0.45).
(2D only)

Das, Karanicolas, Baker. Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 2010.
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Could perplexity be correlated with
fithess/function, too0?

Perplexity correlates well with recovery

Indicator of model’s confidence in its own prediction

Loop E from E.
coli 5S rRNA
(PDB 354D)



Can gRNAde understand RNA fithess landscapes?

A retrospective analysis on an RNA Polymerase Ribozyme
(data from Phil Holliger’s lab at MRC LMB)

McRae, Wan, Kristoffersen, Hansen, Gianni, Gallego, Curran, Attwater, Holliger, and Andersen.
Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. PNAS, 2024.



Structure + Functional landscape

Allows retrospectively analysis of gRNAde for RNA engineering

IGU,

U
Uu s t1 STU
10— 5 Mear fitness of point A "
s -  Cryo-EM structure at 5A resolution
1 U Ay ” G
c c (A‘*, 1) [ , [ [
o (not in gRNAde’s training set).
é § P5 so 4 '52 u“”cﬁ §133
C G KL1 4 gl y c =
- e o o * 15,000+ data points of (mutant
UCA. AU u—‘A—oA—-c—~A—~1|\—-A-A—~A»A-.G-.A_L__ .c:\5 3{) ‘A0 Pf =te 120 .
NPT S seguence, fitness).
J2/3 U 70 .GCGCXGUGGUP—U’C ACGG
GAUGOAGGGAGGOAGCUGCAACCG(I>G 80 9 ""-l

grnenismyr gt b A  gRNAde's perplexity: likelihood of
. sequence folding into given backbone;
can be used for zero-shot ranking of
mutants for a given structure.

e |atent features can be used for
finetuning (supervised learning), too.

McRae et al. Cryo-EM structure and functional landscape of an RNA polymerase ribozyme. PNAS, 2024.



Unsupervised learning of Ribozyme fithess

Expected 'max’ fold change over WT
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A vision for Al-augmented biomolecule design

Evolution: local exploration, gRNAde: global jumps In sequence space
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Huang, Boyken, Baker. The coming of age of de novo protein design. Nature. 2016.




Multi-state RNA design



Explicitly designing conformational ensembles
Single-state design can be ambiguous
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Stagno et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 2017.
Hoetzel, Suess. Structural changes in aptamers are essential for synthetic riboswitch engineering. Journal of Molecular Biology, 2022.
Ken et al. RNA conformational propensities determine cellular activity. Nature, 2023.



Benchmarking multi-state design

Creating a challenging set of structurally flexible RNAs

1. Cluster RNAsolo based on structural similarity — US-align with TM-score
threshold 0.45.

2. Order clusters based on median intra-sequence RMSD among available structures
in the cluster.

3. Training, validation, and test splits become progressively more flexible.
 Top 100 samples from clusters with highest intra-seq. RMSD — test set.
 Next 100 samples from clusters with highest intra-seq. RMSD — validation set.
* \ery large (> 1000 nts) RNAs — training set.

4. If any samples were not assigned clusters, append them to the training set.

Test/validation set: 100 RNAs each, training set: ~4000 RNAs.



Multi-state models slightly improve recovery

Room for improvement in designing models and evaluation

Native sequence recovery

1.00
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0.50

O
N
Ul
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gRNAde (max. #states)

Hypothesis:

Multi-state gRNAde shows
Improved seguence recovery for
structurally flexible regions of RNAs.

» | ook at (local) per-nucleotide
Sequence recovery.



Surface vs. core nucleotides

Multi-state models show improved recovery on surface

> 1.00

O gRNAde model
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Paired vs. unpaired nucleotides

Multi-state models recover ambiguous positions better

1.00
gRNAde model
1 state
0.75 3 states

---m--+ 5 gtates

0.50

O
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Native sequence recovery
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o

0.00 0.25 0.50 0.75 1.00
Nucleotide Paired Probability



Structurally flexible nucleotides

Multi-state models show improved recovery In variable regions

Native sequence recovery

1.00
gRNAde model
1 state
0.75 3 states

---m--+ 5 gtates

0.25

0 5 10 15 20 25
Nucleotide RMSD (A)



Limitations & Future Work



Things we are thinking about

Applications and wet lab validation

 RNA polymerase ribozyme quasispecies.

* Riboswitches and transient gene expression.

 Want to help people actually use this — Please reach out!

Limitations of current models

o Support for multiple chains and accounting for interactions with ligands.
* Improved architectures and benchmarking of multi-state design.

Resources
e Open-source code and checkpoints: github.com/chaitjo/geometric-rna-design

e Tutorial available + forthcoming book chapter in Methods in Molecular Biology.


https://github.com/chaitjo/geometric-rna-design

Thank you for listening! Questions?

Email: chaitanya.joshi©cl.cam.ac.uk, Website: chaitjo.com

Thank you to:

Pietro Lio, Arian Jamasb, Ramon Vinas, Charles Harris, Simon Mathis, Alex
Morehead, Rishabh Anand, and my labmates at Cambridge

Roger Foo (NUS, Singapore) Janusz Bujnicki (IIMCB, Warsaw)
Phil Holliger (MRC LMB) Mihir Metkar (Moderna)
Alex Borodavka (Cambridge Biochem.) Rhiju Das (Stanford)


mailto:chaitanya.joshi@cl.cam.ac.uk
https://chaitjo.com

Primer on Geometric Graph
Neural Networks

A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems. Alexandre Duval*, Simon V. Mathis*, Chaitanya K. Joshi*, Victor
Schmidt*, Santiago Miret, Fragkiskos D. Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, Michael Bronstein.

On the Expressive Power of Geometric Graph Neural Networks. Chaitanya K. Joshi*, Cristian Bodnar*, Simon V. Mathis, Taco Cohen,
and Pietro Lio. ICML 2023.



Normal graphs

A graph is a set of nodes connected by edges

QTLX]'3

“~p Scalar features &

. X N adjacency matrix

E.g. atom type

Note: /'is the dimension or number of scalar feature channels.



Normal Graph Neural Networks

Message passing updates node features using local aggregation

layer O
E m;; o

]GN layer 1
(D—QO T 1
- | |

e
ng _ f(siasj) [ 7 m 7 aye€r

m® .= Aca ( £(s, Sgt)) jeN, }}) | Computation tree:
Message passing gathers &
s .= Upp (Sgt) | mz@) | propagates features beyond

local neighbourhoods.



Normal Graph Neural Networks

Learn how to propagate information along the graph

Target node Neural Network

o o

(1]

b
(5] O Q-
@ o
@ >."-f,: """""" 10,

4

(a) Input graph (b) Neighborhood aggregation



Geometric graphs

Each node is:
« embedded in Euclidean space e.g. atoms in 3D
 decorated with geometric attributes s.a. velocity

o G- (4.5 XV

- Geometric features*
n X3
G

y S’L E R @ & Coordinates
| ) Z }—iz c RS - nXx3
s {;z - RS

* We work with a single vector feature per node, but our setup generalises to multiple vector features and higher-order tensors.




Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Rotations & Reflections (), € & act on only vectors V' and coordinates X:

Scalar features remain unchanged — invariant.

* We use & to denote rotations SO(d) or rotations and reflections O(d)



Physical symmetries

Geometric attributes transform with Euclidean transformations of the system

Translations ¢t € T (d) act on only the coordinates X

Scalar and vector features remain unchanged — invariant.



How to build physics into GNNs?

Geometric GNNs should account for physical symmetries

Potential energy value

E eV

3D rotation
& translation

Per-atom
forces




Why build physics into GNNs?

Geometric GNNs should account for physical symmetries

4
J Permutation
5

3D atomic
system
. Invariant
Potential energy \f ............................................................
c R
i - € R™*" i invariant i
Atom types : > i et -
c R™*1 o] permute rows m I
H H H
P R
— e R™*" c R3%3
3D coordinates — > — > —
c R7x3 permute rows = rotate columns =
X, Y, Z X,V Z




Building blocks of Geometric GNNs

o Scalar features must be updated in an invariant manner.
* Vector features must be updated Iin an equivariant manner.

Q,c6 Q, €6
=4 5 =4 5
O— - 1O O
(8,9,%) 8.V, X
B
+ ..........
......... Qg c®B

Invariant functions vs. Equivariant functions



Geometric message passing

« update scalar and (optionally) vector features
 aggregate and update functions which retain transformation semantics

m{", m{" = Aca ({(s\”, s\, 61,5, %) | j € Ni})  (Aggregate)

] ) 7, 7

S =t . pp (( (t) ﬁ(t)) (m(t) m(.t))) (Update)

z 77, 7,72



