
Background Models and Methods Our Approach Experiments Results Conclusion References

Graph Convolutional Neural Networks
for the Travelling Salesman Problem

(SCSE18-0163)

Chaitanya K. Joshi

School of Computer Science and Engineering
Nanyang Technological University, Singapore

Supervised by Dr. Xavier Bresson



Background Models and Methods Our Approach Experiments Results Conclusion References

Abstract

1. Novel deep learning approach for approximately solving
the Travelling Salesman Problem.

2. We train Graph Convolutional Neural Networks to
predict TSP tours for graphs of up to 100 nodes.

3. Significant gains in performance and speed compared to
all recently proposed deep learning techniques.



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Motivation

Deep Learning

• Sub-field of Machine
Learning.

• Algorithms that learn to
perform a task directly from
examples and observations.

Combinatorial Optimization

• Sub-field of Operations
Research (OR).

• Hand-designed
approximation algorithms for
practical problems that are
intractable to solve at scale.



Background Models and Methods Our Approach Experiments Results Conclusion References

But handcrafting effective algorithms requires:
1. Significant specialized knowledge
2. Years of trial-and-error

Can we use Deep Neural Networks to learn better
combinatorial optimization algorithms instead?

(Bengio et al., 2018)



Background Models and Methods Our Approach Experiments Results Conclusion References

The Travelling Salesman Problem

“Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each

city and returns to the origin city?”

Backbone of modern industries such as transportation, supply
chain, genetics, and scheduling.



Background Models and Methods Our Approach Experiments Results Conclusion References

Learning the TSP

• In practice, Concorde (Applegate et al., 2006) can solve
TSP upto thousands of cities.

• TSP is highly structured: Can be formulated as a
sequential decision making task on graphs.
=⇒ Machine learning methods have be used to train
policies for making these decisions (Vinyals et al., 2015).

Profound Implication
A general learning algorithm for tackling previously
un-encountered NP-hard problems, especially those that are
non-trivial to design heuristics for (Bello et al., 2016).



Background Models and Methods Our Approach Experiments Results Conclusion References

Artificial Neural Networks

Deep Learning
Learning complicated concepts by building them from simpler

ones in a hierarchical or multi-layer manner.



Background Models and Methods Our Approach Experiments Results Conclusion References

Convolutional Neural Network

• Architecture that powers modern systems for natural
language processing, speech recognition and computer
vision.

• Highly parallelizable, scales very well with large datasets
+ compute.



Background Models and Methods Our Approach Experiments Results Conclusion References

Bottleneck
ConvNets require data domain to be regular: 2D Euclidean
grids for images and 1D lines for text/speech.

Real-world data in science/engineering
Underlying non-Euclidean structure =⇒ heterogenous graphs



Background Models and Methods Our Approach Experiments Results Conclusion References

Neural Networks on Graphs

• Geometric deep learning: Emerging techniques
generalizing neural networks to non-Euclidean domains
such as graphs and manifolds (Bronstein et al., 2017).

• Ideal for TSP: Operate directly on the graph structure of
the combinatorial problem.



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Concorde Solver

• Best known TSP solver today.

• Cutting plane algorithms
(Dantzig et al., 1954) to
iteratively solve linear
relaxations of TSP.

• Branch-and-bound
approach to reduce solution
search space.



Background Models and Methods Our Approach Experiments Results Conclusion References

Sequence-to-Sequence Approach

Treat TSP as SEQ2SEQ task: Read input sequence of graph
nodes one-by-one. Use ‘Attention’ mechanism to output a

permutation of the input.

〈g〉 x2x1x5x4x4x3x2x1 x5



Background Models and Methods Our Approach Experiments Results Conclusion References

Sequence-to-Sequence Approach

Introduced by Vinyals et al. (2015) and extended by Bello et al.
(2016).

• Neural Network: Pointer Network (SEQ2SEQ model), no use of
graph structure.

• Training Scheme: Reinforcement Learning to minimize the
length of the output tour (no need to compute optimal TSP
solutions).

• Solution Search: Probabilistic sampling from learnt policy.

• Output Type: Autoregressive, step-by-step generation where
the next step is conditioned on the previous step.



Background Models and Methods Our Approach Experiments Results Conclusion References

Graph Neural Network Approach

Use a graph neural network to build embeddings for each node
and decode the TSP tour step-by-step using attention.

Θ

Θ

ΘΘ

Θ

Θ

Θ

ΘΘ

Θ



Background Models and Methods Our Approach Experiments Results Conclusion References

Graph Neural Network Approach

Introduced by Dai et al. (2017) (with greedy decoding), and
made more powerful by Kool et al. (2019) using attention-based
decoding.

• Neural Network: Sequentially applying the Graph Attention
Network (GAT) (Veličković et al., 2017), invarient to input node
ordering.

• Training Scheme: Reinforcement Learning.

• Solution Search: Probabilistic sampling from learnt policy.

• Output Type: Autoregressive.



Background Models and Methods Our Approach Experiments Results Conclusion References

Our Approach

Process the input graph in a single pass of a graph neural
network to output an edge adjacency matrix. Convert the

matrix into a valid TSP tour using post-hoc search.



Background Models and Methods Our Approach Experiments Results Conclusion References

Our Approach

Introduced by Nowak et al. (2017) and extended by us.

• Neural Network: Graph ConvNet (GCN) (Bresson & Laurent,
2017), more powerful than GAT.

• Training Scheme: Supervised Learning using pairs of problem
instances and optimal solutions generated with Concorde.

• Solution Search: Beam search over edge adjacency matrix.

• Output Type: Non-autoregressive, edge adjacency matrix is
generated in ‘one-shot’ instead of step-by-step.



Background Models and Methods Our Approach Experiments Results Conclusion References

Summary

Our experiments will compare among the following approaches:

Method Neural Network Model Type Training Setting Solution Search Type

Bello et al. (2016) Pointer Network Autoregressive RL Sample from policy
Kool et al. (2019) Graph Attention Network Autoregressive RL Sample from policy
Ours Graph ConvNet Non-autoregressive SL Beam search

We shall also compare to Concorde (TSP heuristics), Guorobi (an
exact LP/QP solver) and Google OR Tools (general heuristics).



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Model Overview

1. Extract compositional feature vectors from input graph by
stacking several graph convolution layers.

2. Output is an edge adjacency matrix denoting the probabilities of
edges occurring on the TSP tour.

3. Edge prediction heat-map is converted to a valid tour using a
post-hoc beam search strategy.



Background Models and Methods Our Approach Experiments Results Conclusion References

Graph Convolution Layer

Graph Convolution layers compute h-dimensional representations hi

for each node i and eij for the edge between each node i and j in the
graph.

Final h-dimensional embedding e′ij for each edge is fed to a
Multi-layer Perceptron classifier to compute the probability of that
edge being connected in the TSP tour.



Background Models and Methods Our Approach Experiments Results Conclusion References

Beam Search Decoding

Output of the model: probabilistic
heat-map over the adjacency

matrix of tour connections.

1. Starting from a random node,
expand b most probable edge
connections among the
node’s neighbors.

2. Keep expanding the top-b
partial tours at each stage till
all nodes visited.

3. Final prediction is the tour
with the highest probability
among the b tours at the end
of search.



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Dataset Generation

• Current paradigm: Training and evaluating models on
TSP instances of fixed sizes. Generate training, validation
and test datasets for graphs of sizes 20, 50 and 100 nodes.

• Training sets: 1 Million pairs of problem instances and
solutions, and validation/test sets: 10,000 pairs.



Background Models and Methods Our Approach Experiments Results Conclusion References

For each TSP, n node locations sampled randomly in the unit
square. Optimal tour found using Concorde.



Background Models and Methods Our Approach Experiments Results Conclusion References

Measuring Performance

We train separate models for TSP20, TSP50 and TSP100, and
compute metrics on held-out test sets of the same problem size:

1. Predicted tour length: Average predicted tour length ĉ over
10,000 instances: 1

m

∑m
i=1 ĉi.

2. Optimality gap: Average percentage ratio of predicted tour
length ĉ relative to optimal solution c over 10,000 instances:
1
m

∑m
i=1

(
ĉi
ci
− 1
)

.

3. Evaluation time: Total wall clock time taken to solve 10,000
instances, either on single GPU (Nvidia 1080Ti) or 32 instances
in parallel on a 32 virtual CPU system (2 × Xeon E5-2630).



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Performance on Fixed-size Instances

Graph ConvNet model outperforms the state-of-the-art deep
learning approach (Kool et al., 2019) in terms of both closeness
to optimality and evaluation time.

Method
TSP20 TSP50 TSP100

Tour Len. Opt. Gap. Time Tour Len. Opt. Gap. Time Tour Len. Opt. Gap. Time

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)
Google OR Tools 3.85 0.37% − 5.80 1.83% − 7.99 2.90% −
PtrNet (Bello et al., 2016) 3.84 0.10% − 5.75 0.95% − 8.00 3.03% −
GAT (Kool et al., 2019) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)
GCN (Ours) 3.84 0.20% (20s) 5.72 0.42% (2m) 7.92 2.06% (10m)



Background Models and Methods Our Approach Experiments Results Conclusion References

Better and Faster Models

Larger Models =⇒ Better Learning
+ We attribute our gains in performance to more powerful
representation learning using very deep convolutional
architectures with up to 30 layers.
− Kool et al. (2019) use only 3 GAT layers.

Parallelized Search =⇒ Faster Models
+ Despite using larger models, our non-autoregressive beam
search implementation is highly parallelized, leading to fast
evaluation.
− Autoregressive approaches generate solutions step-by-step
by sampling from an RL policy, which cannot be parallelized.



Background Models and Methods Our Approach Experiments Results Conclusion References

TSP20 Visualization

For small instances, the model is able to confidently identify
most of the tour edges in the heat-map without beam search.



Background Models and Methods Our Approach Experiments Results Conclusion References

TSP50 Visualization

As instance size increases, prediction heat-map reflects the
combinatorial explosion in TSP.



Background Models and Methods Our Approach Experiments Results Conclusion References

TSP100 Visualization

Beam search is essential for finding the optimal tour for more
complex instances.



Background Models and Methods Our Approach Experiments Results Conclusion References

Trade-offs

Supervised Learning

• Limited data: Generating
labelled datasets for
instances beyond
hundreds of nodes is costly
(computation and time).

• Better learning: The
model is given more
information to learn better
solvers.

Reinforcement Learning

• Infinite data: Does not
require the creation of
labelled datasets as long
as we can design reward
functions.

• Worse learning: The
model is only given a
reward =⇒ less
informative for learning.



Background Models and Methods Our Approach Experiments Results Conclusion References

Table of Contents

Background

Models and Methods

Our Approach

Experiments

Results

Conclusion



Background Models and Methods Our Approach Experiments Results Conclusion References

Conclusion

We propose a simple framework for learning combinatorial
problems that improves over the state-of-the-art:

1. Powerful learning capacity: Can efficiently build very
deep models.

2. Faster inference: All components can be parallelized on
GPUs.



Background Models and Methods Our Approach Experiments Results Conclusion References

Future Work

Our vision for Combinatorial Optimization

• Models are trained on small problem instances (using SL)
and effectively generalize to larger instances (using RL).

• Beyond certain graph sizes, Neural Networks will be faster
than Concorde/handcrafted solvers due to parallelization.



Background Models and Methods Our Approach Experiments Results Conclusion References

References I

David L Applegate, Robert E Bixby, Vasek Chvatal, and
William J Cook. The traveling salesman problem: a
computational study. Princeton university press, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and
Samy Bengio. Neural combinatorial optimization with
reinforcement learning. arXiv preprint arXiv:1611.09940,
2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine
learning for combinatorial optimization: a methodological tour
d’horizon. arXiv preprint arXiv:1811.06128, 2018.

Xavier Bresson and Thomas Laurent. Residual gated graph
convnets. arXiv preprint arXiv:1711.07553, 2017.



Background Models and Methods Our Approach Experiments Results Conclusion References

References II

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,
and Pierre Vandergheynst. Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and
Le Song. Learning combinatorial optimization algorithms
over graphs. In Advances in Neural Information Processing
Systems, pp. 6348–6358, 2017.

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution
of a large-scale traveling-salesman problem. Journal of the
operations research society of America, 2(4):393–410, 1954.

Wouter Kool, Herke van Hoof, and Max Welling. Attention,
learn to solve routing problems! In International Conference
on Learning Representations, 2019. URL
https://openreview.net/forum?id=ByxBFsRqYm.

https://openreview.net/forum?id=ByxBFsRqYm


Background Models and Methods Our Approach Experiments Results Conclusion References

References III

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan
Bruna. A note on learning algorithms for quadratic
assignment with graph neural networks. arXiv preprint
arXiv:1706.07450, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. In Advances in Neural Information Processing
Systems, pp. 2692–2700, 2015.


