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4. Our insights from benchmarking + future directions



Graph Neural Networks (GNNs)

GNNs = deep learning on graph-structured data beyond images and text:
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Graph Convolutions a.k.a. Message Passing

* Images = 2D Grid graphs where each
pixel is connected to 8 neighbors.

* CNN -2 Sliding filter over pixel grid.

 GNN - Sliding filter over any arbitrary
graph structure.

Convolution Pooling Convolution Pooling Fully Fully OQutput
+ReLU +RelU Connected  Connected perdictions
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Graphs: Arbitrary #
neighbors, and no

neighbors are ordered  canonical ordering of
(up/down/left/right). neighbors.

=> 2D Convolution:

=> Graph Convolution:

weighted average of simple average of node

pixel values.

features.

Wu-etal, 2019



https://arxiv.org/abs/1901.00596

Graph Convolutions a.k.a. Message Passing

GNN filter must have the following

properties:

1. Locality, i.e. only nodes’
neighbors are convolved

2. Independent of graph size, i.e.
weight sharing across all nodes

3. Independent of node ordering

4. Independent of number of

neighbors

layer £ + 1

hitt = foonn (BE, {BS:5—1})




Graph Convolutions a.k.a. Message Passing
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hf+1 = fa-cnn ( hf, {hﬁ N Z})



Typical Graph ML Tasks: Node-level

e.g. Community detection on social networks, Point cloud part segmentation




Typical Graph ML Tasks: Graph-level

e.g. Molecular property prediction, Point cloud classification




Typical Graph ML Tasks: Edge-level

e.g. Protein-protein interaction prediction

Latents

(H,A)

Node classification

z = f(h:)

Graph classification

Ze=1(Z: Ii,)

Link prediction

. il = f(h‘:‘h‘l'(‘?’-’)




Simple, Isotropic MP-GNNs

h{! = ReLU(U'K{ + Y V'h),

JeN;

hetl = foonn (BE, {RS:5 o d})

* |sotropic neighborhood aggregation: considers each neighbor equally important
when aggregating to update the features at each node.

* Time/Space complexity: O(n), where n = number of graph nodes



Simple, Isotropic MP-GNNs
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Trainable Aggregation
Function: et1 p Fow
t h;™ = foonn (h; , {h; 17 —
parameters Sum/Mean/Max foonn (Ri, {R5:5 — 1} )

* |sotropic neighborhood aggregation: considers each neighbor equally important
when aggregating to update the features at each node.

* Time/Space complexity: O(n), where n = number of graph nodes



Simple, Isotropic MP-GNNs

4 N £y 4
h{! = ReLU(U'h{ + Y V'hf),

JEN;
Parameter for Parameter for
central node each neighbor

e Original GCNs: Sukhbaatar-etal, 2016; Kipf-Welling, 2017

* GraphSage, Hamilton-etal, 2017
* ChebNet, Defferrard-etal, 2016
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https://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://dl.acm.org/doi/10.5555/3157382.3157527

Anisotropic MP-GNNSs

hf“ — ReLU (Ufhf + Z Nij © th,ﬁ).,,

JeN;

where 7;; = J(Afhf + B‘Ghﬁ),

Rt = foon (RS, {RS:5 = 3})

e Graphs have no direction, unlike images. However, some neighbors
may be more important than others for given task...

* Anisotropic mechanisms allows GNNs to learn weighted aggregation.



Anisotropic MP-GNNSs

hf“ — ReLU (Ufhif + Z Nij © th,ﬁ).,,

_ N N : —
W?j — (T(A h1 — B hj)ﬂ Weight for edge i-j,

Can also take softmax over
all j \in Neighbors(i)

Approach: learn features for each edge in addition to node features:

multiplied to
feature of node j

layer £+ 1

Rt = foon (RS, {RS:5 = 3})

* |nitialize as input edge features, if available, e.g. molecules and bond types.

* Learn edge features as joint representations of node features at each layer.

* Use Gating or Attention mechanisms to learn weighted aggregation.



Anisotropic MP-GNNSs

hi = ReLU(U'h{ + 3

JEN;

3N (1€
Wﬁj = o(Ah; + Bh),

Can also take softmax over
all j \in Neighbors(i)

Nij ©

V'R),

/+1
hz’

Weight for edge i-j,
multiplied to
feature of node j

* Graph Attention Network, Velickovic-etal, 2018

 Gated GCNs: Marchegiani-Titov, 2017; Bresson-Laurent, 2018

* MoNet, Monti-etal, 2016
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Simple GCN vs. Gated GCN
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More complex architectures =>

Tradeoff between computational efficiency vs. performance



Message Passing and k-Hop Neighborhoods

Message (i.e. features) from each node Each node receives information

At layer k: are sent to its k-hop neighbors. P from its k-hop neighborhood



Theoretical Limits of MP-GNNs: Graph Isomorphism

Node features after
message-passing

Final graph features
=sum all node
features

SR o S o Lo B + 84

Graph 1 Graph 2

MP-GNNs will fail to distinguish G1 and G2!



Theoretical Limits of MP-GNNs: Graph Isomorphism

* Two graphs are isomorphic = there
exists an index permutation between
the nodes that preserves node

adjacencies.

o—0
* Graph theory x GNNs = characterize

GNNs’ expressive power via graph o
isomorphism testing

All 4 graphs are
isomorphic.

Further reading: http://irregulardeep.org/



http://irregulardeep.org/

Theoretically Expressive WL-GNNSs

New models designed based on graph isomorphism testing (Weisfeiler-Lehman
Test): Higher Order GNN, Moris-etal, 2019; Equivariant GNN, Maron-etal, 2019.

hf—l—l

ptl = Concat(MWIe (hY) . My,

MLP,; MLP, |MLP;3




Theoretically Expressive WL-GNNSs

New models designed based on graph isomorphism testing (Weisfeiler-Lehman
Test): Higher Order GNN, Moris-etal, 2019; Equivariant GNN, Maron-etal, 2019.

hf—l—]
F 3
-
B+ |= Concat ( My (h) . My (h),| My (b
Concat C | Wle( ) er( )3‘ Wég( ) )
A A T
{ Dense ‘n x n x d’ tensor Product of two 3D Tensors
=> global graph update => 0O(n”3) complexity!
MLP,| MLP; |MLP3 WL-GNNs need to use dense 3D Tensors, which leads to:
1 T 1 1. Comparatively poor space/time complexity:
0(n"2)/0(n"3).
2. Issues with batching graph data.
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Issues with current Graph ML datasets

* Small datasets = unable to statistically separate architectures.

* Non-standardized experimental protocols = reproducibility crisis.

* Graph-agnostic architectures (MLP on node features) can often
match GNN performance = do we even need GNNs?

Rt = ReLU(U'R! + 3" V'h}), vs. bl =

JEN;

ReLU (Ufh;-f )

No message-passing!!



Issues with current Graph ML datasets
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Benchmarking GNNs Repository

e Our goal: identify architectures and mechanisms that are universal,
generalizable and scalable to large/real-world graphs:
1. Datasets which can statistically separate performance.
2. Rigorous experimental settings and reproducible results.
3. Future-proof and open-source to enable new advances.

 Complementary + concurrent work: Open Graph Benchmark, Hu-etal,
2020: real-world and high-quality graph ML datasets and evaluators.



https://ogb.stanford.edu/
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Benchmarking GNNs Repository

Data pipeline to integrate any graph ML datasets.
GNN layers and models, including MP-GNNs and WL-GNNs.
Standardized Training and Evaluation functions.

Configurable hyperparameters and scripts for reproducibility.

O Search or jump to... Pull requests Issues Marketplace Explore

& graphdeeplearning / benchmarking-gnns @ Unwatch v 40 WruUnstar 935  YFork 148 O PyTO rCh

o
<> Code Issues 4 Pull requests Actions Projects Wiki Security Insights Settings DG I

¥ master ~ ¥ 3 branches (0 tags Go to file Add file ~ About 3

Repository for benchmarking

2 vijaydwivedi75 Add PNA to leaderboards (#34) @2da721 onJul20 ) 24 commits graph neural networks
, o .
configs LapPE (#32) last month ¢ anxiv.org/abs/2003.00982
> . .
g data LapPE (#32) last month graph-representation-learning



Graph ML Pipeline

Three fundamental tasks: Node-level, Graph-level

, Edge-level

i Layer ¢ : {h’}, {e’ } Layer £ 4+ 1 : {h{*1}, {e/F} . MLP o
Node feat. Embedding > (W)} / J h; » Node Predictions
Embeddin (hy) ey +
Edge feat. £ (e} ) @ GNN? y 1 i yL MLP b Predicti
@ oo > (hy o /e24 v & i~ Graph Prediction
Graph 6 @ Gy N\ 7 N
N Nl Concat(hF, hF) By b joe Predictions
. J L J L J
T T T
Input Layer Lx GNN Layer Prediction Layer



Example: Molecular Property Prediction

Drug Discovery — screening billions of known molecules to rapidly approximate
their properties, e.g. anti-viral activity to COVID-19 or other diseases.
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(0) Define molecules
as graphs
Cl

>0

Score

(3) Make prediction using
averaged graph feature
(1) L layers of GNN doing Message-passing

of node and edge features Source: MIT, ChemProp




Datasets included with the benchmark

Domain & Construction Dataset #Graphs #Nodes Total #Nodes Task
Chemistry: Real-world molecular graphs ZINC 12K 9-37 277,864 Graph Regression
Mathematical Modelling: Artificial graphs generated PATTERN 14K 44-188 1,664,491 Node Classification
from Stochastic Block Models CLUSTER 12K 41-190 1,406,436
Computer Vision: Graphs constructed with MNIST 70K 40-75 4,939,668 . .
SLIC super-pixels of images CIFAR10 60K 85-150 7,058,005 Graph Classification
Cqmbmaton_a 1 Optimization: Uniformly generated TSP 12K 50-500 3,309,140 Edge Classification
artificial Euclidean graphs
Social Networks: Real-world citation graph COLLAB 1 235,868 235,868 Edge Classification
Circular Skip Links: Isomorphic graphs with same degree CSL 150 41 6,150 Graph Classification

 We focus on medium-scale datasets which are accessible to
academic hardware capabilities.

* We are also compatible with OGB for real-world and large-scale

graph ML datasets.




Experimental Settings and Best Practices

* Train/Val/Test splits: Given with datasets, or random splits.

* LR and Optimizer: Adam with LR decay strategy.

* Initial LR 1e-3/1e-4, halved every time Val loss doesn’t decrease after 10
epochs of patience.

» Stop training when LR reaches 1e-6 or time >= 12 hours.

e Statistically significant results through reporting mean and std across
4 different random seeds.

* Fixed parameter budgets for fair comparison:

1. 100K parameters, 3 or 4 GNN layers
2. 500K parameters, 8 or 16 GNN layers
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Graph Classification — MNIST & CIFAR10

Model Configurations MNIST Accuracy CIFAR10 Accuracy
Graph-agnostic MLP 100K, 4L 95.34 +-0.13 56.34 +- 0.18
Simple MP-GNN 100K, 4L, GraphSage 97.31 +- 0.09 65.76 +- 0.30
Anisotropic MP-GNN 100K, 4L, Gated GCN 97.34 +- 0.14 67.31 +- 0.31
3WL-GNN 100K, 3L 95.07 +- 0.96 59.17 +- 1.59

* MNIST and CIFAR10 are sanity checks.

* GNNs don’t match CNNs for image
classification, yet:

e But this is to be expected as CNNs are
specialized to images.

* For CV, GNNs are more useful for 3D shapes
or scene graphs.
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Graph Regression — ZINC

Model Configurations Regression MAE
Graph-agnostic MLP 100K, 4L 0.70 +- 0.00
Simple MP-GNN 100K, 4L, GCN 0.45 +- 0.00
Anisotropic MP-GNN 100K, 4L, Gated GCN 0.37 +- 0.00
3WL-GNN 100K, 3L 0.25 +- 0.05
Simple MP-GNN 500K, 16L, GCN 0.36 +- 0.01
Anisotropic MP-GNN 500K, 16L, Gated GCN 0.28 +- 0.01
3WL-GNN 500K, 8L 0.30 +- 0.05

* Graph structure is needed: GNNs outperform MLPs.
* Anisotropy improves MP-GNN performance.
 WL-GNNSs are powerful, but difficult to scale (in #params as well as speed).



Node Classification — Semi-sup. Clustering

Model Configurations Accuracy (weighted)
Graph-agnostic MLP 100K, 4L 20.97 +- 0.00
Simple MP-GNN 100K, 4L, GCN 53.44 +- 2.02
Anisotropic MP-GNN 100K, 4L, Gated GCN 60.40 +- 0.41
3WL-GNN 100K, 3L 57.13 +- 6.53
Simple MP-GNN 500K, 16L, GCN 68.49 +- 0.97
Anisotropic MP-GNN 500K, 16L, Gated GCN 73.84 +- 0.32
3WL-GNN 500K, 3L (8L diverges) 55.48 +- 7.86

 Anisotropy is crucial: Softmax-attention is flexible over max/mean/sum.

 WL-GNNSs are difficult to scale, especially on larger graphs than chemistry:
O(n”2)/0(n”3) space/time complexity; use of dense 3D tensors.



Link Prediction — Travelling Salesman Problem

Model Configurations F1 Score Epoch Time
Graph-agnostic 100K, 4L 0.54 +-0.00 50.15s
MLP

Simple 100K, 4L, GCN 0.63 +- 0.00 105.89 s
MP-GNN

Anisotropic 100K, 4L, 0.80 +- 0.00 218.20 s
MP-GNN Gated GCN

3WL-GNN 100K, 3L 0.69 +- 0.07 17,468.81 s

* Anisotropy is especially powerful for edge tasks - More analysis in paper.
* But comes at computational cost over simple GCNs.

 Clearly, there’s a need for practical tradeoffs between expressivity and
performance in GNN architectures.
* In the paper = novel positional encodings based on spectral graph theory for MP-GNNs.



Open Problems

1. Next generation of GNNs which lead to meaningful real-world
improvements over the message-passing paradigm.

2. Understanding the tradeoffs between theoretical expressivity and
computational tractability as well as generalization.

3. Structure discovery: GNNs operate on a priori graph structure, but
this may be incomplete/noisy/containing latent interactions, etc.

4. Scientific applications: how to better augment GNNs with domain
knowledge to accelerate scientific discovery?



Bonus Content!

* Transformers from NLP are GNNs in disguise?

* GNNs for data-driven Combinatorial Optimization



Transformers are GNNs? The
Gradient

Full post:
thegradient.pub/transformers-are-
graph-neural-networks/

Transtformers are P osi=e v
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Graph Neural |
Transformers are a special case of Graph Neural Networks.
NetWOI'kS This may be obvious to some, but the following blog post

does a good job at explaining these important concepts.

12.SEP.2020
m Chaitanya Joshi @chaitjo
Excited to share a blog post on the connection between #Transformers for
NLP and #GraphNeuralNetworks (GNNs or GCNs)
y engineering friends often ask me: deep learning on graphs sounds great, but are there : giaphdespleaminggitiublio/postAansiomns
- - y B
any real applications? e ° ° RN Translation?
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i Sentiment?
While Graph Neural Networks are used in recommendation systems at Pinterest, Alibaba and Chaitanya K. Joshi S
Twitter, a more subtle success story is the Transformer architecture, which has taken the T T—
NLP world by storm. Through this post, I want to establish a link between Graph Neural &2
Networks (GNNs) and Transformers. I'll talk about the intuitions behind model architectures in | RECENT STORIES
11:58 PM - Feb 29, 2020 (@)

the NLP and GNN communities, make connections using equations and figures, and discuss how

) Shortcuts: How Neural - QO 971 244 people are Tweeting about thi
we can work together to drive future progress. Let's start by talking about the purpose of model 1. Networks Love to Cheat = e o

architectures—representation learning.


https://thegradient.pub/transformers-are-graph-neural-networks/

Output
Probabilities

Linear

Add & Norm
Feed

Forward
e 1 R Add & Norm
AL 0 Mutti-Head

Feed Attention

Forward
N

7 - W
Add & Norm

Nx I
~>{_Add & Norm e
Multi-Head Multi-Head
Attention Attention
Y t
— J U —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transformer Architecture and (Multi-head) Attention

Multi-head attention

Linear

Concat

A

Scaled Dot-Product
aled Dot-Produc J& h Scaled dot-product attention

Attention ~
y I | 1 I
V- = r"'? rf“
[ Linear [ Linear I Linear MatMul
¥ 7 7
Vv K Q
Zoom-In




Sentence as Fully-connected Word Graphs

RNN > Translation?

Sentiment?

W < Usual representations for NLP

Transf. ) Part-of-speech tags?

Translation?

Sentiment?

GNN
Next d?
Transformers as GNNs - "" axtwar
"e Part-of-speech tags?




Standard GNN
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https://thegradient.pub/transformers-are-graph-neural-networks/

GNNSs for Combinatorial Optimization

GNNs in combination with Reinforcement
Learning are an interesting approach towards == y
solving NP-hard optimization problems U,
defined via graphs:

1. Classical problems: Travelling Salesman,
Minimum Vertex Cover, Satisfiability

2. Physical sciences: Generating Graphs,
Generating Molecules, Drug Discovery

Guitof \ orida
California
Californta Monélevrey 'f'""',f,ﬁf) 49 8 72

Mexico Havanhlap data ©2014 Google, INEGI

3. Computer architecture: Device Placement
Optimization, Chip Design

Further reading: https://graphdeeplearning.github.io/project/combinatorial-optimization/



https://graphdeeplearning.github.io/project/combinatorial-optimization/

End-to-end Comb. Opt. Pipeline
ke Il g i [

4. Search

5. Train

3. Predict

Learn prediction
policy through

imitation (SL) or
experience (RL)

Enforce
feasibility and
constraints

through graph
search

Obtain dense
representations
of nodes and

edges using
GNN model

Define the
problem using
graphs

Compute
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Figure 1: Overview of our approach. Taking a 2D graph as input, the graph ConvNet model outputs
an edge adjacency matrix denoting the probabilities of edges occurring on the TSP tour. This is
converted to a valid tour using beam search. All components are highly parallelized and solutions are
produced in a one-shot, non-autoregressive manner.



The End. Questions? ©



