
Graph Neural Networks: 
Benchmarks and Future Directions

Vijay Dwivedi*, Chaitanya K. Joshi*, 

Thomas Laurent, Yoshua Bengio, Xavier Bresson

ArXiv paper, March 2020: arxiv.org/abs/2003.00982

Software toolkit on GitHub: github.com/graphdeeplearning/benchmarking-gnns

https://arxiv.org/abs/2003.00982
https://github.com/graphdeeplearning/benchmarking-gnns


About Me

• Research Engineer at I2R since August.

• Graduated from NTU Comp Science in 2019, 
previously RA with Prof. Xavier Bresson.

• Interests: Natural Language Processing, 
Dialog Systems, Graph Neural Networks, 
Combinatorial Optimization.

• Profile: http://chaitjo.github.io/

http://chaitjo.github.io/


Outline of this Talk

1. What are Graph Neural Networks?

2. Why do we need new benchmarks?

3. Our proposed benchmark

4. Our insights from benchmarking + future directions



Graph Neural Networks (GNNs)

GNNs → deep learning on graph-structured data beyond images and text:

Source: Xavier Bresson, 2019

https://www.ntu.edu.sg/home/xbresson/


Source: Xavier Bresson, 2020



Graph Convolutions a.k.a. Message Passing

• Images → 2D Grid graphs where each 
pixel is connected to 8 neighbors.

• CNN → Sliding filter over pixel grid.

• GNN → Sliding filter over any arbitrary 
graph structure.

Source: Wu-etal, 2019

Pixel grids: Fixed # 
neighbors, and 
neighbors are ordered 
(up/down/left/right).

=> 2D Convolution:
weighted average of 
pixel values.

Graphs: Arbitrary # 
neighbors, and no 
canonical ordering of 
neighbors.

=> Graph Convolution:
simple average of node 
features.

https://arxiv.org/abs/1901.00596


Graph Convolutions a.k.a. Message Passing

GNN filter must have the following 
properties:

1. Locality, i.e. only nodes’ 
neighbors are convolved

2. Independent of graph size, i.e. 
weight sharing across all nodes

3. Independent of node ordering

4. Independent of number of 
neighbors



Graph Convolutions a.k.a. Message Passing



Typical Graph ML Tasks: Node-level

e.g. Community detection on social networks, Point cloud part segmentation

Source: Petar Veličković



Typical Graph ML Tasks: Graph-level

e.g. Molecular property prediction, Point cloud classification

Source: Petar Veličković



Typical Graph ML Tasks: Edge-level

e.g. Protein-protein interaction prediction

Source: Petar Veličković



Simple, Isotropic MP-GNNs

• Isotropic neighborhood aggregation: considers each neighbor equally important
when aggregating to update the features at each node.

• Time/Space complexity: O(n), where n→ number of graph nodes



Simple, Isotropic MP-GNNs

Trainable 
parameters

Aggregation 
Function: 

Sum/Mean/Max

• Isotropic neighborhood aggregation: considers each neighbor equally important
when aggregating to update the features at each node.

• Time/Space complexity: O(n), where n→ number of graph nodes



Simple, Isotropic MP-GNNs

• Original GCNs: Sukhbaatar-etal, 2016; Kipf-Welling, 2017

• GraphSage, Hamilton-etal, 2017

• ChebNet, Defferrard-etal, 2016

Parameter for 
central node

Parameter for 
each neighbor

https://papers.nips.cc/paper/6398-learning-multiagent-communication-with-backpropagation
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://dl.acm.org/doi/10.5555/3157382.3157527


Anisotropic MP-GNNs

• Graphs have no direction, unlike images. However, some neighbors 
may be more important than others for given task…

• Anisotropic mechanisms allows GNNs to learn weighted aggregation.



Anisotropic MP-GNNs

Approach: learn features for each edge in addition to node features:

• Initialize as input edge features, if available, e.g. molecules and bond types.

• Learn edge features as joint representations of node features at each layer.

• Use Gating or Attention mechanisms to learn weighted aggregation.

Weight for edge i-j, 
multiplied to 

feature of node jCan also take softmax over 
all j \in Neighbors(i) 



Anisotropic MP-GNNs

• Graph Attention Network, Velickovic-etal, 2018

• Gated GCNs: Marchegiani-Titov, 2017; Bresson-Laurent, 2018

• MoNet, Monti-etal, 2016

Weight for edge i-j, 
multiplied to 

feature of node j

Can also take softmax over 
all j \in Neighbors(i) 

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1703.04826
https://arxiv.org/pdf/1711.07553
https://arxiv.org/abs/1611.08402


Simple GCN vs. Gated GCN

More complex architectures => 

Tradeoff between computational efficiency vs. performance

vs.



Message Passing and k-Hop Neighborhoods

Layer 1

Layer 2

Message (i.e. features) from each node 
are sent to its k-hop neighbors.

Each node receives information 
from its k-hop neighborhood

At layer k:

Source: GraphSage



Theoretical Limits of MP-GNNs: Graph Isomorphism

Source: Xavier Bresson, 2020

MP-GNNs will fail to distinguish G1 and G2!

2 2 2 2 2 2

Node features after 
message-passing

Final graph features 
= sum all node 

features



Theoretical Limits of MP-GNNs: Graph Isomorphism

• Two graphs are isomorphic→ there 
exists an index permutation between 
the nodes that preserves node 
adjacencies.

• Graph theory x GNNs → characterize 
GNNs’ expressive power via graph 
isomorphism testing

Further reading: http://irregulardeep.org/

All 4 graphs are 
isomorphic.

http://irregulardeep.org/


Theoretically Expressive WL-GNNs

New models designed based on graph isomorphism testing (Weisfeiler-Lehman 
Test): Higher Order GNN, Moris-etal, 2019; Equivariant GNN, Maron-etal, 2019.



Theoretically Expressive WL-GNNs

New models designed based on graph isomorphism testing (Weisfeiler-Lehman 
Test): Higher Order GNN, Moris-etal, 2019; Equivariant GNN, Maron-etal, 2019.

WL-GNNs need to use dense 3D Tensors, which leads to:
1. Comparatively poor space/time complexity: 

O(n^2)/O(n^3).
2. Issues with batching graph data.

Dense ‘n x n x d’ tensor 
=> global graph update

Product of two 3D Tensors 
=> O(n^3) complexity!



Outline of this Talk

1. What are Graph Neural Networks?

2. Why do we need new benchmarks?

3. Our proposed benchmark

4. Our insights from benchmarking + future directions



Issues with current Graph ML datasets

• Small datasets → unable to statistically separate architectures.

• Non-standardized experimental protocols → reproducibility crisis.

• Graph-agnostic architectures (MLP on node features) can often 
match GNN performance → do we even need GNNs?

vs.

No message-passing!!



Issues with current Graph ML datasets



Benchmarking GNNs Repository

• Our goal: identify architectures and mechanisms that are universal, 
generalizable and scalable to large/real-world graphs:

1. Datasets which can statistically separate performance.

2. Rigorous experimental settings and reproducible results.

3. Future-proof and open-source to enable new advances.

• Complementary + concurrent work: Open Graph Benchmark, Hu-etal, 
2020: real-world and high-quality graph ML datasets and evaluators.

https://ogb.stanford.edu/


Outline of this Talk

1. What are Graph Neural Networks?

2. Why do we need new benchmarks?

3. Our proposed benchmark

4. Our insights from benchmarking + future directions



Benchmarking GNNs Repository

• Data pipeline to integrate any graph ML datasets.

• GNN layers and models, including MP-GNNs and WL-GNNs.

• Standardized Training and Evaluation functions.

• Configurable hyperparameters and scripts for reproducibility.



Graph ML Pipeline

Three fundamental tasks: Node-level, Graph-level, Edge-level



Example: Molecular Property Prediction

Drug Discovery – screening billions of known molecules to rapidly approximate 
their properties, e.g. anti-viral activity to COVID-19 or other diseases.

(1) L layers of GNN doing Message-passing
of node and edge features

(2) Average all 
features

(3) Make prediction using 
averaged graph feature

Source: MIT, ChemProp

(0) Define molecules 
as graphs



Datasets included with the benchmark

• We focus on medium-scale datasets which are accessible to 
academic hardware capabilities.

• We are also compatible with OGB for real-world and large-scale 
graph ML datasets.



Experimental Settings and Best Practices

• Train/Val/Test splits: Given with datasets, or random splits.

• LR and Optimizer: Adam with LR decay strategy.
• Initial LR 1e-3/1e-4, halved every time Val loss doesn’t decrease after 10 

epochs of patience.

• Stop training when LR reaches 1e-6 or time >= 12 hours.

• Statistically significant results through reporting mean and std across 
4 different random seeds.

• Fixed parameter budgets for fair comparison:
1. 100K parameters, 3 or 4 GNN layers

2. 500K parameters, 8 or 16 GNN layers



Outline of this Talk

1. What are Graph Neural Networks?

2. Why do we need new benchmarks?

3. Our proposed benchmark

4. Our insights from benchmarking + future directions



Graph Classification – MNIST & CIFAR10

• MNIST and CIFAR10 are sanity checks.

• GNNs don’t match CNNs for image 
classification, yet:
• But this is to be expected as CNNs are 

specialized to images.
• For CV, GNNs are more useful for 3D shapes

or scene graphs.

Model Configurations MNIST Accuracy CIFAR10 Accuracy

Graph-agnostic MLP 100K, 4L 95.34 +- 0.13 56.34 +- 0.18

Simple MP-GNN 100K, 4L, GraphSage 97.31 +- 0.09 65.76 +- 0.30

Anisotropic MP-GNN 100K, 4L, Gated GCN 97.34 +- 0.14 67.31 +- 0.31

3WL-GNN 100K, 3L 95.07 +- 0.96 59.17 +- 1.59



Graph Regression – ZINC

• Graph structure is needed: GNNs outperform MLPs.

• Anisotropy improves MP-GNN performance.

• WL-GNNs are powerful, but difficult to scale (in #params as well as speed).

Model Configurations Regression MAE

Graph-agnostic MLP 100K, 4L 0.70 +- 0.00

Simple MP-GNN 100K, 4L, GCN 0.45 +- 0.00

Anisotropic MP-GNN 100K, 4L, Gated GCN 0.37 +- 0.00

3WL-GNN 100K, 3L 0.25 +- 0.05

Simple MP-GNN 500K, 16L, GCN 0.36 +- 0.01

Anisotropic MP-GNN 500K, 16L, Gated GCN 0.28 +- 0.01

3WL-GNN 500K, 8L 0.30 +- 0.05
Chemical property



Node Classification – Semi-sup. Clustering

Model Configurations Accuracy (weighted)

Graph-agnostic MLP 100K, 4L 20.97 +- 0.00

Simple MP-GNN 100K, 4L, GCN 53.44 +- 2.02

Anisotropic MP-GNN 100K, 4L, Gated GCN 60.40 +- 0.41

3WL-GNN 100K, 3L 57.13 +- 6.53

Simple MP-GNN 500K, 16L, GCN 68.49 +- 0.97

Anisotropic MP-GNN 500K, 16L, Gated GCN 73.84 +- 0.32

3WL-GNN 500K, 3L (8L diverges) 55.48 +- 7.86
Community for 

each node

• Anisotropy is crucial: Softmax-attention is flexible over max/mean/sum.

• WL-GNNs are difficult to scale, especially on larger graphs than chemistry: 
O(n^2)/O(n^3) space/time complexity; use of dense 3D tensors.



Link Prediction – Travelling Salesman Problem

• Anisotropy is especially powerful for edge tasks→More analysis in paper.
• But comes at computational cost over simple GCNs.

• Clearly, there’s a need for practical tradeoffs between expressivity and 
performance in GNN architectures.
• In the paper → novel positional encodings based on spectral graph theory for MP-GNNs.

Model Configurations F1 Score Epoch Time

Graph-agnostic 
MLP

100K, 4L 0.54 +- 0.00 50.15 s

Simple 
MP-GNN

100K, 4L, GCN 0.63 +- 0.00 105.89 s

Anisotropic 
MP-GNN

100K, 4L, 
Gated GCN

0.80 +- 0.00 218.20 s

3WL-GNN 100K, 3L 0.69 +- 0.07 17,468.81 s Yes/No for each edge



Open Problems

1. Next generation of GNNs which lead to meaningful real-world 
improvements over the message-passing paradigm.

2. Understanding the tradeoffs between theoretical expressivity and 
computational tractability as well as generalization.

3. Structure discovery: GNNs operate on a priori graph structure, but 
this may be incomplete/noisy/containing latent interactions, etc.

4. Scientific applications: how to better augment GNNs with domain 
knowledge to accelerate scientific discovery?



Bonus Content!

• Transformers from NLP are GNNs in disguise?

• GNNs for data-driven Combinatorial Optimization



Full post:
thegradient.pub/transformers-are-
graph-neural-networks/

Transformers are GNNs?

https://thegradient.pub/transformers-are-graph-neural-networks/


Transformer Architecture and (Multi-head) Attention

Source: Lillian Weng



Sentence as Fully-connected Word Graphs

 Usual representations for NLP

Transformers as GNNs →



Standard GNN
Graph Attention 

Network

Transformer

+ Multi-head 
mechanism

+ Normalization 
layers

+ Residual links

+ Weighted sum 
aggregation

Full post: thegradient.pub/transformers-are-graph-neural-networks/

https://thegradient.pub/transformers-are-graph-neural-networks/


GNNs for Combinatorial Optimization

GNNs in combination with Reinforcement 
Learning are an interesting approach towards 
solving NP-hard optimization problems 
defined via graphs:

1. Classical problems: Travelling Salesman, 
Minimum Vertex Cover, Satisfiability

2. Physical sciences: Generating Graphs, 
Generating Molecules, Drug Discovery

3. Computer architecture: Device Placement 
Optimization, Chip Design

Further reading: https://graphdeeplearning.github.io/project/combinatorial-optimization/

https://graphdeeplearning.github.io/project/combinatorial-optimization/


End-to-end Comb. Opt. Pipeline



The End. Questions? ☺


